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Some bounds are obtained on <R(V}, the radius of convergence of the density expansion for the 
logarithm of the grand partition function of a system of interacting particles in a finite volume V, 
and on <R, the radius of convergence of the corresponding infinite-volume expansion (the virial expan­
sion). A common lower bound on <R(V) and <R is 0.28952/(u + 1 )B, where u "" exp r -Min s-lL:'<i,s. 
2<p(Xi - xi)]/"T [so that u ~ 1, with equality for nonnegative <p(r)], B ""f!e-'I'(r)/"T - 11 d3 r, 
and <pcr) is the binary interaction potential; the irreducible Mayer cluster integrals have the related 
upper bounds {3k ~ [(u + I)B/0.28952]k/k[u = 1, when <p(r) ~ 0]. For potentials with hard cores 
the maximum density is an upper bound on <R(V), though possibly not on <R; an example shows how 
both <R(V} and <R can.be less than the maximum density, even if there is no phase transition. A theorem 
is proved, analogous to Yang and Lee's theorem on uniform convergence in the complex z plane, 
defining a class of domains in the complex p plane within which the operations V -> (X) and d/dp 
commute. This theorem is used to show that limv.o:> <R(V} ~ <R, and that there is no phase transition 
for 0 ~ p < 0.28952/(u + I}B. 
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1. INTRODUCTION 

RECENTLY several authors1
-

3 have obtained 
upper and lower bounds for the radius of 

convergence R(V) of the Mayer fugacity expansions.4 

functions n,(x1 ... x, I z, V) can also be expanded 
as power series in z, with radius of convergence 
at least3 R(V). 

'0-1 log Z(z, V) == p(z, V)/KT = 1: MV)i, (1.1) 
~ 

p(z, V) = (z/KT) dp(z, V)/dz = 1: tMV)i. (1.2) 
~ 

Here Z(z, V) and p(z, V) are the grand partition 
function and the mean number density at fugacity z 
and temperature T for a system of particles with 
two-body interactions, confined to a spatial region V 
whose volume is '0. Boltzmann's constant is denoted 
by K. The coefficients btCV) are the finite-volume 
Mayer4 cluster integrals. The s-particle distribution 

* Supported by the Air Force Office of Scientific Research 
under Grant 62-64. 

t Present address: Imperial College, London, England. 
1 J. Groeneveld, Phys. Letters 3, 50 (1962). 
I D. Ruelle, Correlation Functions of Classical Gases (Insti­

tute for Advanced Study, Princeton, 1963); Ann. Phys. 
(N. Y.) 25, 109 (1963). 

• O. Penrose, J. Math. Phys. 1312 (1963). 
• Mayer describes his theory in Hanrlbuch der Physik 

(Springer-Verlag, Berlin, 1958), Vol. 12. 

The thermodynamic pressure and density are 
given1

-
3 for small z by 

p(z) == lim p(z, V) = KT 1:~beZ~, (1.3) 
V-><o 

p(z) == lim p(z, V) (1.4) 
V->a> 

where 

b~ == lim MV) (t = 1, 2, ... ). (1.5) 
V-><o 

Moreover, the common radius of convergence R 
of these two series satisfies3 

R ~ lim inf R(V), (1.6) 
V-><o 

since any point z = a with lal < lim infv->a> R(V) 
must be a regular point of p(z). This follows from 
Yang and Lee's theory.s 

i C. N. Yang and T. D. Lee, Phys. Rev. 87,404 (1952). 
The theory is generalized to a wider class of potentials by 
D. Ruelle, Helv. Phys. Acta 36, 183 (1963). 
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The purpose of this paper is to make a similar 
study of the radii of convergence <R(V) and <R of 
the finite- and infinite-volume density expansions 
obtained by eliminating z from (1.1) and (1.2), and 
from (1.3) and (1.4). These expansions may be 
written 

p(z, V) = P(p(z, V), V) == KTp(z, V) 

X [1 - ~ k ! 1 I1k(V)P(Z, VY'] , (1.7) 

p(z) = P(p(z» == KT p(z) 

X [1 - ~ k ! 1 I1kP(Z)k 1 (1.8) 

The I1k(V)'S can be expressed in terms of the 
bt(V)'s by algebraic relations,4 such as 111(V) = 
2b2(V),112(V) = 3b3(V) - 6b2(V?, etc., which do not 
involve V explicitly. It follows by (1.5) that 

(1.9) 

The 11k'S are the irreducible Mayer cluster integrals4 

and (1.8) is the virial expansion. We shall study 
<R(V) by a method based on Lagrange's theorem 
for the expansion of one function of z in powers 
of another. This method incidentally yields upper 
bounds on the absolute values of the l1/s and I1I(V)'S. 
We shall study <R by means of a generalization to 
the complex p-plane of Yang and Lee's results6 on 
uniform convergence in the z plane. 

Our lower bounds on <R(V) and <R apply to systems 
of particles whose positions Xl, X2 , ••• are either 
continuously variable or confined to a lattice. Their 
interaction stems from a two-body interaction poten­
tial <p(r) for which there exists a constant cf? such that 

E <P(Xi - x;) :2: -scf? for all s, Xl ••• X.. (1.10) 
i<;:5,_ 

The circumstances under which (1.10) is satisfied 
have been discussed by Ruelle2

•
6 and Penrose.3 We 

shall also make the convergence assumption 

B == 1 le-'P(r)/,T - 11 dPr < <Xl, 

all space 
(1.11) 

where v is the number of space dimensions (= 1, 2, 
or 3). In discussing the upper bounds on CR(V) and 
<R, we shall further assume that the potential has 
a hard core, i.e., that a positive constant a exists 
such that 

<p(r) = + <Xl if r < a, (1.12) 

but this assumption is unnecessary in the other parts 
of the discussion. 

S D. Ruelle, Ref. 5. 

2. LAGRANGE'S THEOREM 

Lagrange's theorem,7 adapted to the expansion of 
p(z, V) in powers of p(z, V) may be stated thus: 
let the function z/ p(z, V) be analytic within and 
on a closed contour C surrounding the origin of the 
z plane, and let p be a complex number satisfying 

Ipl < p. == Min Ip(z, V)I· (2.1) 
z on C 

Then the equation p(z, V) = p is satisfied by just 
one value of z inside C, which we denote by z(p, V); 
further, if the function p(z, V) is analytic within 
and on C, it has the convergent expansion 

pep, V) == p(z(p, V), V) (2.2) 

where 

_ 1 1. dp(z, V) dz 
en = 21ri j C' dz n( p(z, V)r 

1 ~-1 [dP(Z, V) { z }n] (2.3) 
= nl dZ,,-1 dz p(z, V) .-0' 

The path of integration is any contour C' surround­
ing z = 0 such that Ip(z, V) I ~ p. for all z on C'. 
The uniqueness of z(p, V) follows from Rouche's 
theorem,s which shows that the functions z/p and 
z/ p - z/ p(z, V) have the same number (one) of 
zeros inside C. The formula for en is obtained by 
expanding in powers of p on both sides of the follow­
ing equation derived from Cauchy's residue theorem: 

pep, V) 

= J:... J. (z V) dp(z, V) dz 
21ri j C' P , dz p(z, V) - p , (2.4) 

and then integrating the resulting formula for e" 
by parts. By virtue of the relation (1.2) between 
p(z, V) and p(z, V), and the definition (1.7) of the 
I1k(V), Eq. (2.3) for n = 2, 3, ... is equivalent to 

1 1. dz 
-kl1k(V) = 21ri j z(p(z, V)}k (2.5) 

for k = 1, 2, '" . This formula is used in Sec. 3 
to estimate the I1k(V)'S. 

3. LOWER BOUNDS ON <R( V) AND <R 

According to Lagrange's theorem, the series (2.2) 
converges if Ipl is less than the lower bound II- of 
Ip(z, V) I on the contour C; that is, 

<R(V) :2: p. == Min Ip(z, V)I. (3.1) 
• on C 

7 E. T. Whittaker and G. N. Watson, Modern Analysis 
(Cambridge University Press, New York, 1927), Sec. 7.32. 

8 E. T. Copson, Theory of Functions of a Complex Variable 
(Oxford University Press, London, 1935), Sec. 6.21. 
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A suitable lower bound on Ip(z, V)I can be found 
from Penrose's generalization3 of Groeneveld's es­
timatesl of the bt(V)'s 

Itbt(V) I ~ u t- 2 [tB]t-ljt! (t = 2,3, " .), (3.2) 

where 

where v == w(l + u)/u and g(w) - (1 - e-to)/w. 
Since u/(l + u) ~ ! by (3.3) and g(w) decreases 
monotonically, the right side of (3.10) is at least 
[v - v2g(!v)l!(u + l)B. Hence (3.9) implies 

(R(V) ~ Max [v - v
2
g(!v)]/(u + l)B . 

(3.3) = 0.28952/(u + l)B. (3.11 ) 

and 4> and B are defined in (1.10) and (1.11). These 
estimates implyl.3 that R(V) ~ l/euB. In the rest 
of the section we ensure the convergence of (1.1) 
and (1.2) by requiring 

Izl < l/euB. (3.4) 

Since bl = 1 the series (1.1) now gives the inequality 

Ip(z, V) - zl 

= It tbtz
t
[ ~ ;B t .e:-l(uB Izi)t/t! 

t-2 U t-2 

= w/u
2
B - Izl/u, (3.5) 

where w is defined by 

we-to = uB Izl, O~w<1. (3.6) 

Since the function we-to increases monotonically from 
o to e-l in the range 0 ~ w < 1, the condition 
(3.4) guarantees that w exists and is unique. In 
deriving the last line of (3.5) we used Euler's 
expansion9 for w in powers of we- 1D

: 

w = L tl-l(we- tD)t/t!. (3.7) 

From (3.5) and (3.6) we obtain a lower bound 
on Ip(z, V)I, 
Ip(z, V)I ~ (1 + l/u) Izl - w/u

2
B 

= {(u + l)e- to - 1 }w/u2B. (3.8) 

As the contour C in (3.1), we may choose any 
circle Izl = const < l/euB. By (3.6) the equation 
of this circle may be written w = const, and the 
corresponding value of J.L is ~ {(u+ l)e- tD -1 }w/u2B. 
Since (3.1) holds whatever value of w in the range 
o ~ w < 1 is used to define C, we must have 

(R(V) ~ Max {(u + l)e- tD 
- 1 }w/u2B. (3.9) 

O:$w<l 

To obtain a convenient estimate of (R(V), we use 
the identity 

{(u + l)e-" - 1Jw/u2B 

= [v - v2g(1 ~ J l(U + l)B, (3.10) 
---

I G. P6lya and G. Szego, Aufgaben und LehTsatze der 
Analysis (Springer-Verlag, Berlin, 1925), Vol. I, Part III, 
Chap. 5, No. 209. 

The maximum is attained when v = 0.62984. If we 
had not replaced g(vu/(l + u» by g(!v) the numera­
tor in (3.11) would have been replaced by a function 
of u increasing monotonically from 0.28952 when 
u = 1 (nonnegative potentials) to e -1 = 0.36788 
as u -7 <Xl. 

These methods also yield upper bounds on the 
Ilk(V)'S. Taking the contour in (2.5) to be a circle 
Izi = const, we obtain the estimate 

1 f [1 I k IIlk(V) I ~ 2- d Izl Max {( V)}kl 
7r C zonC Z pz, 

= [Min Ip(z, V)lrk. (3.12) 
z on C 

Choosing the radius of the circle, as before, to 
maximize the quantity in square brackets, we find 
that 

k IIlk(V) I ~ [Max {(u + l)e-
1D 

- 1}w/u2Brk 

1D 

< [(U + l)BJk 
- 0.28952 

(k = 1,2, ... ). (3.13) 

Combined with (1.5) this gives upper bounds on 
the irreducible Mayer cluster integrals 

k I Ilk I ~ [(u + 1)B/(0.28952)]k. (3.14) 

This set of inequalities implies, by (1.8) and 
Cauchy's kth-root convergence test, that 

. . I k I-11k 
(R = l~~f k + 1 Ilk I 

~ 0.28952/(u + l)B, (3.15) 

so that (R and (R(V) have the same lower bound. 
The result (3.15) can also be obtained by applying 
to the function p(z) the same arguments which when 
applied to p(z, V) led to (3.11); or by using (6.1). 

4. UPPER BOUND ON m( V) 

One way of finding an upper bound on (R(V) is 
to locate singularities of the analytic continuation 
of the function pep, V) defined for small p in Sec. 2. 
This analytic continuation is easiest for the phys­
ically possible values of p. 

The physically possible values of z are the real 
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positive values. The theory of fluctuations shows 
that dp(z, V)/dz = [(N2) - (N)2l/Z'U is positive 
for positive z. Therefore, as z increases from 0 to GO, 

p(z, V) increases monotonically from 0 to some 
limiting value PM(V), (which may be + GO) and 
p(z, V) = "T g p(z, V) dz/z increases monotonically 
from 0 to GO. Thus the physically possible values 
of pare 0 < P < PM(V), For hard-core potentials 
PM(V) is given by 

PM(V) = M(V)/'U, (4.1) 

where M (V) is the largest number of nonintersecting 
spheres of diameter a whose centers can be fitted 
into the region V. For potentials without hard cores, 
PM(V) is + GO. 

Since p(z, V) increases monotonically for 0 < z < GO , 

its inverse function z(p, V)-although many-valued­
has a branch Z(p, V), which increases monotonically 
from 0 to GO as P increases from 0 to PM(V), For the 
physically possible values of P we may therefore 
define pep, V) by 

pep, V) == p(Z(p, V), V) (0 < P < PM)' (4.2) 

This function increases monotonically from 0 to GO, 

and is therefore singular at P = PM(V), Moreover, 
the two definitions (2.2) and (4.2) are equivalent 
when 0 < P < 0.28952/(u + l)B. It follows that 
the series (2.2) must diverge when P = PM(V), 
so that 

(4.3) 

Reiss, Frisch, and Lebowitzll for the hard-sphere 
fluid illustrates this possibility since its only sing­
ularity is a triple pole at P = 6pM/rV2 = 1.3505PM 
which suggests that (R ~ 1.3505PM > PM. 

S. YANG-LEE THEORY FOR THE 0 PLANE 

In this section we generalize Yang and Lee's 
theory of uniform convergence in the z plane by 
proving a corresponding theorem for the P plane. 
This theorem indicates, for example, the circum­
stances under which the operations limv .... '" and d/dp 
are interchangeable. 

Theorem. Let PI < P < P2 be a segment of the 
real P axis, with 0 ~ PI and P2 < PM. Let 5) be 
any bounded simply connected region in the P plane, 
whose intersection with the line segment 0 < P < PM 
is the set PI < P < P2, and into which analytic 
continuation of the functions pep, V) defined by 
(4.2) yields a single-valued regular function for all 
sufficiently large V. Then the sequence of functions 
pep, V) converges uniformly on any region bounded 
by a contour inside 5). 

Proof: The proof depends on Vitali's theorem12 

which states that, if 5) is a region and f(p, V) is a 
sequence of analytic functions which are 

(i) regular in 5), 

(ii) uniformly bounded in 5), 

(iii) convergent, as V - GO, on a set of points 
having a limit point in 5), 

Unfortunately this upper bound provides informa- then the sequence f(p, V) converges uniformly in 
tion only for hard-core potentials. any region bounded by a contour inside 5). We shall 

Taking the limit V - GO we obtain
lO 

apply Vitali's theorem to the sequence 

lim (R(V) ~ PM == lim PM(V), (4.4) 
V-+m v-co 

To obtain an upper bound on (R we may try using 
the same argument for p(z) and z(p) instead of p(z, V) 
and z(p, V). Provided that the system has no phase 
transition [so that p(z) is analytic at every point 
on the positive z axis], and provided that 

dp(z)/dz > 0 for all z > 0, (4.5) 

the same argument goes through, giving 

(4.6) 
v .... '" 

if there is no phase transition. However, if there 
is a phase transition, (R may perhaps be larger than 
PM' The approximate equation of state found by 

10 If the limits in (4.4) do not exist, the inequality is true 
for both the largest and the smallest limit points of <R(V) 
and PM(V), 

f(p, V) == p/Z(p, V), (5.1) 

where Z(p, V) is the analytic continuation, into 5), 

of the function Z(p, V) defined for 0 < P < PM in 
Sec. 4. We start the sequence (5.1) with V suffi­
ciently large to make the analytic continuation of 
pep, V) into 5) possible for all larger V. According 
to the definitions (1.1) and (1.7), the functions 
f(p, V) and pep, V) are related by the differential 
equation 

..!. dP(p, V) = 1 _ P d[log f(p, V)]. 
"T dp dp 

(5.2) 

----
11 H. Reiss, H. L. Frisch and J. L. Lebowitz [J. Chem. 

Phys. 31, 369 (1959)] find that p/ pKT = (1 + a + (2 )/(1 - a)' 
where a = V21rp/6PM' The same equation of state also 
follows from the Percus-Yevick equation: see M. Wertheim, 
Phys. Rev. Letters 8, 321 (1963); E. Thiele, J. Chem. Phys. 
39,474 (1963). . 

12 E. C. Titchmarsh, The Theory of Functitm8 (Oxford 
University Press, London, 1939), 2nd ed., p. 168. 



                                                                                                                                    

CONVERGENCE OF VIRIAL EXPANSIONS 845 

Since pep, V) is regular and ~ is simply connected, 
it follows that log f(p, V) is regular and single-valued 
in ~; therefore, the analytic continuation used in 
the definition (5.1) leads to no ambiguities, and 
moreover f(p, V) satisfies the condition (i) of 
ViIati's theorem. 

To deal with the condition (li), consider first the 
part of ~ where Z(p, V) ?: l/euB. Clearly f(p, V) 
is bounded in this part, since the denominator 
of (5.1) is bounded away from zero and the nu­
merator is bounded because ~ is a bounded region 
of the p plane. For the other part of ~, where 
Z(p, V) < l/euB, we write z for Z(p, V) and use 
(3.5) to show that 

Ip(z, V)I ~ w/u2B + (1 - l/u) Izl ~ w/uB, (5.3) 

so that 

If(p, V)I = ip(Z~ V)i ~ w/lzl uB = e" ~ e. (5.4) 

Thus f(p, V) is bounded in both parts of ~, and 
(li) is satisfied. 

To show that the sequence defined in (5.1) satisfies 
condition (iii) it is sufficient to show that, as V ~ co , 

Z(p, V) converges to a limit at almost all points 
on the segment P1 < p < P2, since then any sub­
segment pf ~ p < P;, where PI < p; < p~ < P2, 
lies within ~ and contains13 at least one limit point 
of the points where Z (p, V) converges. 

We shall begin by proving the corresponding 
convergence property for the function p(z, V) of 
which Z (p, V) is the inverse. The proof depends 
on the fact, proved in Sec. 4, that p(z, V) is an 
increasing function of z for real positive z; this fact 
implies that, for any positive z, 

p(z, -h, V) ~ p(z, V) ~ p(z, h, V), 

where h is a positive number less than z, and 

p(z, ±h, V) 

(5.5) 

= h-1 
{ p(z ± t, V) dt/t (5.6) 

= [P(z ± h, V) - p(z, V)]/(±hKT) (5.7) 

by (1.2). It is known from Yang and Lee's theory5 
that 

p(z) -= lim p(z, V) (5.8) 
V-.a> 

exists for all positive Z; therefore taking the limit 
V ~ co in (5.5) gives 

p(z, -h) :5 lim inf p(z, V) 
V-.a> 

:5 lim sup (p(z, V) :5 p(z, +h», (5.9) 
v-. .. 

11 Ref. 7, Sec. 2.21, p. 12. 

where 

p(z, ±h) == [P(z ± h) - p(z)]/(±hKT). (5.10) 

Taking the limit h ~ 0 in (5.9) we find that 
limv-. .. p(z, V) exists, and is equal to (z/KT) dp(z)/dz, 
for all positive values of z where dp(z)/dz exists. 
But p(z), being a nondecreasing function, is14 

differentiable for almost all Z; therefore 

p(z) == lim p(z, V) (5.11) 
v ..... 

exists for almost all positive values of z. 
Since the p(z, V)'s are increasing functions, the 

limit function p(z) is nondecreasing. Its inverse 
function z(p) is therefore uniquely definedl5 for all 
values of P satisfying 0 < p < PM, apart from a 
set of exceptional values of p for which the equation 
p = p(z) has more than one solution. Each excep­
tional value corresponds to a segment of the real 
z axis on which p(z) is constant. Since these segments 
of the z axis are countable, the exceptional values 
of p form a set of zero measure. 

To show that lim Z(p, V) exists, let Po be any 
nonexceptional value of p, let Zo == Z(Po), and let 
E be a small positive number such that p(zo - E) 
and p(zo + E) exist. Since p(z) is monotonic and 
Po is nonexceptional, we have p(zo- E) < Po < p(zo+ E), 
and hence by (5.11) the inequality 

p(zo - E, V) < Po < p(zo + E, V) (5.12) 

holds for all sufficiently large V. Applying the non­
decreasing function Z(p, V) to (5.12) we find 

Zo - E ~ Z(Po, V) ~ Zo + E. (5.13) 

Since E can be made arbitrarily small, it follows that 

lim Z(Po, V) = Zo = Z(Po) (5.14) 
v ..... 

for almost all values of Po in the range 0 < p < PM' 
Consequently, condition (iii) of Vitali's theorem is 
satisfied. 

Vitali's theorem now tells us that the sequence 
f(p, V) converges uniformly in any region bounded 
by a contour inside ~; its limiting function f(p) is 
therefore regular inside ~. To prove our theorem 
that the same is true of the sequence pep, V) we 
consider two cases separately. Suppose first that 
f(p) has a zero inside ~, say at p = a. The value 
of a cannot be zero, since if the point p = 0 is 
within ~ then the conditions of the theorem imply 

14 Ref. 12, Sec. 11.42. 
16 Either as the Bolution of p = p(z) or, if this has no 

solution, by means of a Dedekind section of the real z axis. 
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that the segment of the nonnegative real axis inside 
D is 0 ~ P < P2, so that by continuity teO) = 
limp_o+ p/Z(p, V) = limz_o p(z, V)/z = 1 ;= O. 
By Hurwitz's theorem,'6 all the t(p, V)'s for large 
enough V must also have zeros at points near 
p = a ;= 0 inside D. Hence, by (5.2), all the pep, V)'s 
for large enough V have logarithmic singularities 
at these points. This contradicts the condition that 
the pep, V)'s must be single-valued within D for 
large enough V, and thus rules out this first case 
where t(p) has a zero inside D. 

In the remaining case the function t(p), having no 
zeros inside D, must be bounded away from zero 
inside any contour within D; consequently all the 
t(p, V)'s are also bounded away from zero inside the 
contour for large enough V. It follows that the se­
quence log t(p, V) converges uniformly within the con­
tour, and so also do '7 the sequences d(log t(p, V»/dp 
and [by (5.2)] dP(p, V)/dp. Evaluating pcp, V) by 
integration of its derivative along a path inside D 
with one end fixed on the positive real axis, we 
conclude'7 that the sequence pcp, V) does converge 
uniformly within the contour. Q.E.D. 

6. RELATION BETWEEN <R AND lim <R(V) 

The theorem of Sec. 5 leads at once to a result 
analogous to (1.6). Let 0 be any small positive 
number. Then the disk Ipl < lim infv_oo CR(V) - 0 
satisfies the conditions required of the region D, 
since the power series (2.2) whose radius of con­
vergence exceeds the radius of D for all sufficiently 
large V, provides the analytic continuation of pcp, V) 
from the real axis into D. The theorem then implies 
that Pcp), being the limit of a uniformly convergent 
sequence of analytic functions, is itself analytic 
inside the contour Ipl = lim infv_oo CR(V) - 20. 
Therefore the power-series expansion (1.8) for Pcp) 
converges if Ipl :::; lim infv_oo CR(V) - 20. Since 0 can 
be made arbitrarily small, it follows that 

lim inf CR(V) :::; CR. (6.1) 
v_oo 

7. OTHER DENSITY EXPANSIONS 

Besides the pressure, other quantities have useful 
expansions in powers of p. We can relate their 
radii of convergence to CR and CR(V). 

Foremost among these expansions is that of the 
fugacity z. Since the analytic functions pcp, V) and 
Z (p, V) are both regular near p = 0, it follows 
from the differential equation (5.2) that their sin­
gularities in the p plane (appropriately cut) coincide, 

16 Ref. 12, Sec. 3.45. 
17 Ref. 8, Secs. 5.13 and 5.12. 

and hence that the series expansion of Z (p, V) has 
radius of convergence CR(V). Similarly,the series 
expansion of Z(p) == limv_oo Z(p, V) has radius of 
convergence CR. 

The density expansions for the 8-particle distribu­
tion functions n.(x17 ••• x.) are also important. 
To study their convergence, consider the disk 
Ipl < CR(V) and its image D in the z plane under 
the mapping z = Z(p, V). Since the function p(z, V) 
is single-valued, it is regular within D; therefores 

Z(z, V) has no zeros in D, so thae n.(x17 ••• x.) 
is a regular function of z within D. It follows that 
n.(x

" 
... x.) is a regular function of p within 

Ipl < CR(V), so that its expansion in powers of p 
has radius of convergence at least CR(V). 

8. DISCUSSION 

The information we have obtained about CR(V) 
and CR can be summarized in the formulas 

0.28952/(u + l)B :::; CR(V) :::; PM(V), (8.1) 

lim inf CR(V) :::; CR, (8.2) 

which come from (3.11), (4.3), and (6.1). The 
quantities u, B, and PM(V) are defined in (3.3), 
(1.11), and (4.1). 

The simplest illustration of these formulas is 
provided by a system of hard rods in one dimension. 
Its equation of state is 

P /KT = p/(l - ap) = P + a/ + '" , (8.3) 

where a is the length of each rod. The value of CR is 
therefore l/a. The value of lim infv_oo CR(V) is harder 
to calculate, but (8.1) and (8.2) provide the rather 
wide bounds 

0.07238 :::; a lim inf CR(V) :::; 1 (8.4) 

since u = 1, B = 2a, and PM = l/a. 
The main physical conclusion to be drawn from 

our results is that there can be no phase transition 
for densities less's than 0.28952/(u + l)B, since 
the series (1.7) converges for these densities and 
is equal (by the theorem of Sec. 5) to the thermo­
dynamic pressure, which is therefore an analytic 

18 D. Ruelle, Ref. 2, shows that for nonnegative potentials 
there can be no phase transition for densities less than 
1/3.8B = 0.26/B. Using an inequality due to E. Lieb [J. 
Math. Phys. 4, 671 (1963)], this number can be slightly 
increased to 1/(1 + e)B = 0.27/B. For general hard-core 
potentials the corresponding number is l/u[(l + e) B+ + eB_], 
where B+ and B_ are the contributions of the positive and 
negative parts of \O(r) to the integral (1.1) [see O. Penrose, 
J. Math. Phys. 4, 1488 (1963), Eq. (8.3)]. For more general 
potentials, however, the bound 0.28952/(u + l)B given in 
the text is the best available. 
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function of p. Moreover, if lim inf CR(V) is known, 
it provides a better lower bound on the density at 
a phase transition. This follows from the arguments 
of Secs. 5 and 6. 

On the other hand, our results do not prove that 
CR is a lower bound on the density at a phase transi­
tion. For quantum systems, Fuchs19 has shown that 
CR can actually exceed the value of P at a phase 
transition (for an ideal B-E gas). For classical 
systems the question remains open, although the 
example mentioned at the end of Sec. 4 suggests 
that here too, CR can exceed the value of P at a 
phase transition.20 

Although the value of P at the first phase transition 
cannot be less than lim inf CR(V), it can be greater 
than both lim inf CR(V) and CR. This can be shown 
by considering a one-dimensional system of inter­
acting hard rods with the interaction potential 

{

+ 00 (Irl < a), 

cp(r) = KT In 2 (a:::; Irl < 2a), 

o (2a :::; Ir\). 

(8.5) 

For this potential, fugacity and pressure are related 
by21 

19 W. H. J. Fuchs, J. Ratl. Mech. Anal. 4, 647 (1955). 
10 M. Kac, G. E. Uhlenbeck and P. C. Hemmer, J. Math. 

Phys. 4, 216 (1963), consider a one-dimensional system with 

{ '" Irl < a 
<p(r) = - 2a'Ye-'Y', Irl > a, 

and find that this system has a phase transition in the limit 
'Y -+ 0, which can be obtained from Maxwell's equal area 
construction applied to 

po(p) = KT[--p- - a p2] = KTp[l- I> _k_ {3kOpk]. 
I-pa k+l 

where (3ko = lim'Y~o{3k('Y), and (h('Y) = limY ..a>{3k('Y, V). Thus 
(RO = a-I, the radius of convergence of the above series 
exceeds the value of p at the phase transition. 

11 H. Takahasi, Proc. Phys. Soc. Japan 24, 60 (1942); 
F. Gursey, Proc. Cambridge Phil. Soc. 46, 182 (1950). 

= KT e-3ap/2KT cosh (ap/2KT), (8.6) 
p 

so that 

_1_ = d(In z) = ! + ~ _ ~ tanh~. (8.7) 
pKT dp p 2KT 2KT 2KT 

As p moves in its Argand plane from the origin 
along the positive imaginary axis, the value of 
1/ P - !a moves along its imaginary axis from -ioo 
to a value -(1.1322)ia, achieved when p = 2ixKT/a 
where x = 0.7393 is the real solution of x = cos x, 
and then retreats again to -ioo. Hence the image 
point of P starts at the origin of its Argand plane, 
moves along a circular arc whose furthest point from 
the origin is its other end at 1/(1.5000 - 1. 1322i)a, 
and returns to the origin. Therefore the function 
pep) has a branch point at 1/(1.5000 - 1.1322i)a, 
and CR is at most 1/11.5000 - 1.1322il a = HO.5321), 
which is less than PM = 1/ a. Thus, for this system, 
unlike the simple hard-rod system, both CR and 
lim inf CR(V) are less than PM, despite the fact that 
there is no phase transition for 0 < P < PM. There­
fore, the actual values of CR and lim infY ... a> CR(V) 
have, in general, no physical significance since they 
may be determined by singularities off the real 
positive P axis.22 
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22 The nearest singularity of P(p) is off the real positive 
p axis if and only if an infinite number of virial coefficients 
are negative. This example therefore supplements Wertheim's 
proof that the virial coefficients need not all be positive even 
if <p( r) is nonnegative. [Wertheim considers the case <p( r) <X r-n ; 

forthcoming paper.] 
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It is shown that two quantum theories dealing, respectively, in the Hilbert spaces of state vectors 
.0, and .02 are physically equivalent whenever we have a faithful representation of the same abstract 
algebra of observables in both spaces, no matter whether the representations are unitarily equivalent 
or not. This allows a purely algebraic formulation of the theory. The framework of an algebraic version 
of quantum field theory is discussed and compared to the customary operator approach. It is pointed 
out that one reason (and possibly the only one) for the existence of unitarily inequivalent faithful, 
irreducible representations in quantum field theory is the (physically irrelevant) behavior of the 
states with respect to observations made infinitely far away. The separation between such "global" 
features and the local ones is studied. An application of this point of view to superselection rules shows 
that, for example, in electrodynamics the Hilbert space of states with charge zero carries already all 
the relevant physical information. 

I. INTRODUCTION 

T HE essential feature which distinguishes quan­
tum field theory within the frame of general 

quantum physics is the principle of locality. This 
principle states that it is meaningful to talk of 
observables which can be measured in a specific 
space-time region and that observables in causally 
disjoint regions are always compatible. It is then 
natural to introduce the following concepts: If B 
is a region in Minkowski space, we denote by ~(B) 
the algebra generated by the observables in B. A 
specific field theory will fix the correspondence be­
tween regions and algebras 

B ~~(B). (1) 

In fact, we may consider this correspondence to be 
the content of the theory. Indeed, once it is known, 
one can calculate quantities of direct physical in­
terest such as masses of particles and collision cross 
sections. 1 

This approach has been developed in previous 
work2

•
3 within the customary framework of quan­

tum theory in which observables are considered 
to be (bounded or unbounded) operators on a Hil-

• This work was supported in part by the National 
Science Foundation. 

t On leave from Physique Theorique, Faculte des Sciences, 
Marseille, France. 

1 At the present stage this claim is an overstatement, but 
it is a reasonable extrapolation of results described in Ref. 3. 

2 R. Haag, Colloque Intemationale sur les Problemes 
MatMmatiques de la Theorie Quantique des Champs, Lille, 1957 
(Centre National de la Recherche Scientifique, Paris, 1958); 
R. Haag and B. Schroer, J. Math. Phys. 3, 248 (1962); H. 
Araki, "Einfuhrung in die Axiomatische Quantenfeldtheorie," 
Lecture notes at the EidgenOssischen Technischen Hochschule, 
ZUrich, 1961/62, unpublished. 

a R. Haag, Phys. Rev. 112, 669 (1958)i.P' Ruelle, Helv. 
Phys. Acta 35, 147 (1962); H. Araki, see !tef. 2. 
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bert space. The algebras ~(B) are then concrete 
*-algebras of operators and it is mathematically 
convenient to replace ~(B) by its associated von 
Neumann ring R(B). Properties of this family of 
von Neumann rings, which follow from general 
physical principles or are suggested by conventional 
quantum field theory, have been studied in Ref. 2. 
Particle aspects and collision theory are treated 
in Ref. 3. 

In the present paper we shall be concerned with 
another question. Suppose that the algebras ~(B) 
are abstractly defined (without reference to operators 
on a Hilbert space).4 If we consider a faithful 
realization of the algebraic elements by operators 
on a Hilbert space we come back to the previous 
point of view. However, we expect that there are 
many unitarily inequivalent irreducible representa­
tions. This ambiguity, typical of quantum field 
theory, has been the subject of some discussion 
within the past decade.6 To deal with it, most authors 
assume that there is one and only one representa­
tion space in which the physical vacuum state ap­
pears as a vector and that we have to single out 
this particular representation as the physically 

4 In a heuristic manner the commutation relations and 
field equations of a conventional quantum field theory 
provide such an abstract characterization. 

6 It was first noticed in the example of various algebras 
associated with infinitely many creation and destruction 
operators. See J. von Neumann, Compo Math. 6, 1 (1938); 
K. O. Friedrichs, Mathematical Aspects of the Quantum 
Theory of Fields (Interscience Publishers, Inc., New York, 
1953). For further discussions of this phenomenon in its 
relation to various models in quantum field theory see, for 
instance, L. Van Hove, Physica 18, 145 (1952); A. S. WIght­
man and S. S. Schweber, Phys. Rev. 98, 812 (1955); R. Haag, 
Kg!. Danske Videnskab. Selskab Mat.-Fiz. Medd. 29, 
No. 12 (1955); 1. E. Segal, Trans. Am. Math. Soc. 88, 12 
(1958); J. Lew, Ph.D. thesis, Princeton Univ., 1960, un­
published; and the papers cited in Ref. 6. 
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relevant one.& While this attitude appears to be 
perfectly consistent it does not go to the heart of 
the matter. The fact that no actual measurement 
can be performed with absolute precision implies 
that the realistic notion of "physical equivalence" 
is far less stringent than that of unitary equivalence. 
Our discussion in Sec. II shows that this notion 
coincides with the mathematical concept of "weak 
equivalence" as introduced by Fell.7 

Fell's results then imply that all faithful repre­
sentations are in fact physically equivalent, thus 
opening the way to a purely algebraic approach to 
the theory. The distinction between "physical" and 
"unitary" equivalence was forced on us by the dis­
cussion of examples in a recent paper.s 

The purely algebraic approach to the theory has 
been championed for many years by Sega1.9 He 
pointed out that many questions of physical in­
terest (e.g., the determination of spectral values) 
can be answered without reference to a Hilbert 
space if one chooses the algebra of observables to 
be a C*-algebra. lO Applying these ideas to quantum 
field theory Segal expected to circumvent the diffi­
culties associated with the existence of inequivalent 
representations. ll So far this approach has stayed, 
however, in a somewhat experimental stage, i.e., it 
has not yet led to a well-defined frame in which a 
satisfactory physical interpretation is specified. It is 
the purpose of this paper to establish such a frame 
making essential use of the principle of locality. 
This frame is very similar to that in Ref. 2 but 
differs from it in two respects. First, we consider 
the algebras ~(B) as (abstract) C*-algebras, not as 
operator algebras on a Hilbert space. Secondly, we 
exclude from the list of "all" observables those 
quantities which refer to infinitely extended regions. 
Thus the total energy, total charge, etc., are con­
sidered as unobservable. This is of particular im­
portance in connection with superselection rules 
(see Sec. III). 

We turn now to a precise specification of the frame: 

8 In Wightman's approach the existence of a vacuum 
state and the relevant properties of this state are postulated 
on physical grounds. See, e.g., A. S. Wightman, Phys. Rev. 
101, 860 (1956). The following papers discuss the existence 
and uniqueness of a vacuum state for specific models. H. 
Araki, J. Math. Phys. 1, 492 (1960); D. Shale, Ph.D. Thesis, 
Department of Mathematics, University of Chicago, 1961, 
unpublished; I. E. Segal, Illinois J. Math. 6, 500 (1962); H. J. 
Borchers, R. Haag, and B. Schroer, Nuovo Cimento 29, 148 
(1963). 

7 J. M. G. Fell, Trans. Am. Math. Soc. 94, 365 (1960). 
8 H. J. Borchers, R. Haag, and B. Schroer, see Ref. 6. 
g I. E. Segal, Ann. Math. 48, 930 (1947). 
10 For definitions and relevant theorems see Appendix 1. 
11 I. E. Segal, Colloque Internationale sur les Problemes de la 

Theorie Quantique des Champs, Lille, 1957 (Centre National 
de la Recherche Scientifique, Paris, 1958). 

(1) The "regions" B for which the correspond­
ence (1) is defined shall be the open sets with com­
pact closure12 in Minkowski space, the algebras 
~(B) shall be (abstract) C*-algebras. 

(2) Isotony: If Bl :> B2 then ~(BI) :> ~(B2)' 
We assume in addition that one of the two following 
situations prevails. Either ~(BI) and ~(B2) have 
a common unit element, or neither of them has a 
unit. The first situation can be obtained from the 
second by formal adjunction of a unit. 

(3) Local Commutativity: If Bl and B2 are 
completely spacelike with respect to each other, 
then ~(BI) and ~(B2) commute. 

(4) The set-theoretic union of all ~(B) is a 
normed *-algebra.13 Taking its completion we get 
a C*-algebra which we denote by ~ and call the 
algebra of quasilocal observables. We maintain that 
~ contains all observables of interest.14 

(5) Lorentz Covariance: The inhomogeneous 
Lorentz group is represented by automorphisms 
A E ~ ~ ALE ~ such that 

!(B)L = !(LB), (2) 

where LB is the image of the region B under the 
Lorentz transformation L. 

(6) !( is primitive (see Appendix). 
Concerning the physical interpretation the es­

sential point is, of course, that the algebra of ob­
servables ~ has a texture, namely the family of 
subalgebras ~(B), and that the elements of ~(B) 
are interpreted as representing physical operations 
performed in the region B. In Sec. II we discuss 
to some extent how this information can be exploited 
and we justify the previously mentioned notion of 
physical equivalence of representations. Section III 
deals with the separation of global and local aspects 
and its application to superselection rules. Section 
IV gives a brief comparison between the present 
approach and the operator approach. 

n. PHYSICAL INTERPRETATION OF AN ALGEBRAIC 
SCHEME AND PHYSICAL EQUIVALENCE OF 

REPRESENTATIONS 

We are concerned with two categories of objects: 
"states" and "operations." The term "state" is 

12 Physically speaking: 4-dimensional regions with finite 
extension. 

13 The union of all ~ (B) has an obvious *-algebra structure 
due to the isotony assumption. Furthermore, the norm of one 
of its elements is the same in all local algebras, ~ (B) con­
taining it due to the uniqueness of the C*-norm (see Appendix 
1). 

14 ~ is the collection of the uniform limits of all (bounded) 
observables describing measurements performable in finite 
regions of space-time. By taking uniform limits we do not 
essentially change the local character of the observables 
(hence the name quasilocal). 
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used for a statistical ensemble of physical systems, 15 
the term "operation" for a physical apparatus which 
may act on the systems of an ensemble during a 
limited amount of time producing a transformation 
from an initial state to a final state. We assume that 
any operation is applicable to any state. This is 
one of the idealizations inherent in quantum 
physics. One is frequently interested in operations 
which transmit only a certain fraction of the systems 
of the initial ensemble and eliminate the others. 
This fraction (probability) is a number depending 
on the initial state and on the operation. It is the 
one piece of information about the state which is 
gathered by the experimenter performing the opera­
tion.16 An experiment may always be regarded as 
the determination of the transmission probabilities 
for a finite number of operations. 

We may say therefore that we have a complete 
theory if we are able in principle to compute such 
probabilities for every state and every operation 
when the state and the operation are defined in 
terms of laboratory procedures. 

It is not the objective of this paper to justify 
the particular mathematical formalism by means 
of which "states" and "operations" are represented 
in quantum theory.17 We accept here uncritically 
the following formal structure:18 One has an algebra 
21 (which in our case will be identified with the 
C*-algebra described in the introduction). A "state" 
is mathematically represented by a positive linear 
form (expectation functional) over 21. Explicitly, if 
f{J denotes a state, then for every A E 21 we have a 
complex number f{J(A) , depending linearly on A 
and such that 

f{J(A * A) 2:: o. (3) 

The value which f{J takes for the unit element I of 
the algebra defines the normalization of the state. 
Intuitively speaking, f{J(I) is proportional to the 
number of systems of which the ensemble is com­
posed (the proportionality factor being irrelevant). 

16 We adopt Segal's terminology in which the word state 
is used for any statistical ensemble. If the ensemble cannot be 
decomposed into purer ones it is called a "pure state," 
otherwise an "impure state" ("mixture" in von Neumann's 
terminology). 

16 We find it preferable to base our discussion on the 
notion of "operations" as defined above instead of "ob­
servables" as used by Dirac and von Neumann. An "observ­
able" in the technical sense is an idealization, which in 
general implies suitably defined limits of an infinite number 
of operations. It is thus a far less simple concept. 

17 We hope to discuss this question in another paper. 
18 J. von Neumann, Mathematical Foundations of Quantum 

Mechanics (Princeton University Press, Princeton, 1955); 
1. E. Segal, see Ref. 9. 

One calls f{J(I) the norm of the state f{J.19 The col­
lection of all positive linear functionals over 21 is 
the positive cone of the dual space 21* of the algebra 
and is therefore denoted by 21* (+). A functional 
f{J E 21* (+) is called "extremal" if it cannot be 
decomposed into a positive linear combination of 
two others, i.e., if f{J = Ctf{JI + {Jf{J2 with Ct > 0, 
fJ > 0, f{JI E 21* (+ >, f{J2 E 21* (+) is impossible except 
for the trivial solution f{J1 = Af{J. The extremal func­
tionals correspond to pure states. 

An "operation" is mathematically represented by 
a linear transformation of 21* which maps 21* (+) 

into itself and does not increase the norm. Those 
special operations which transform pure states into 
pure states are called "pure operations." It is 
asserted that the pure operations are in one to one 
correspondence with the elements contained in the 
unit sphere of the algebra (elements A E 21 with 
IIAII S 1).20 The transformation of the (general) 
state f{J by the pure operation A is given by f{J ~ f{JA 
with 

f{JA(B) = f{J(A*BA). (4) 

Therefore one gets for the transmission probability 
of f{J through A the expression 

P(f{J, A) = f{J(A * A)/f{J(I). (5) 

Apart from the emphasis on "operations" instead 
of "observables" the preceding paragraph was just 
a description of the standard formal structure of 
quantum physics. It may be useful to point out the 
difference between the Hilbert space approach21 and 
the purely algebraic approach22 as far as this general 
formalism is concerned. In the former case the only 
states considered are the density matrices in the 
representation space (positive-definite self-adjoint 
operators with finite trace). This collection of states 
is a subset (usually not the whole) of 21* (+). The 
purely algebraic approach on the other hand con­
siders all elements of 21* (+) as possible states. One 
has to ask therefore whether this richer supply of 
states makes the physical interpretation more 
difficult. 

We must turn now to the physical interpretation, 
i.e., to the following question: Suppose a specific 

,. It is not crucial to assume that the algebra contains the 
unit element; see Appendix 1. The norm is then defined as 
sup I<I>(A)I/I!AII. 

20 It has been emphasized by H. Ekstein that, in general, 
one algebraic element will correspond to many different 
laboratory procedures which are equivalent insofar as they 
produce the same transformation of the states. For simplicity 
we shall, however, always speak of an "operation" instead 
of an "equivalence class of operations." 

21 J. von Neumann, see Ref. 18. 
221. E. Segal, see Ref. 9. 
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operation (or state) is defined in terms of a laboratory 
procedure. How do we find the corresponding ele­
ment in the mathematical description? For the 
"operations" the question is partially answered by 
the assertion: An operation in the space-time region 
B corresponds to an element from ~(B). It is very 
likely that this simple statement provides not only 
a partial answer but a complete one because ulti­
mately all physical processes are analyzed in terms 
of geometric relations of (unresolved) phenomena. 
In any case it is rather evident that one can construct 
a good mathematical representative of a Geiger 
counter coincidence arrangement using the sub­
algebras for finite regions.23 

The remaining task is to bridge the gap between 
the physical and the mathematical description of a 
state. One possible attitude is, of course, to say 
that the state ({) may be described physically (as 
well as mathematically) by the collection of proba­
bilities P«({), A) for all pure operations A. This 
would mean that, once an ensemble has been pre­
pared, "somehow" we make all sorts of monitoring 
experiments to find out which ensemble we have. 
The other attitude is to assume that the ensemble 
is prepared by means of a single, specific operation 
from an initial ensemble which is completely un­
known. In practice both methods (preparation of 
ensemble by a "filtering" operation from an un­
known ensemble and determination of ensemble by 
monitoring experiments) are used to supplement 
each other. In both respects it is clear that the 
physical interpretation of states is fixed once we 
know the correspondence between the mathematical 
and the physical description for the operations. It 
is, however, also clear that no actual experiment will 
enable us to establish a definite state. 

Take, first, the case of monitoring experiments 
on an ensemble. These will provide us with a finite 
number of probabilities, measured with a finite 
accuracy. In the mathematical scheme this informa­
tion characterizes exactly a neighborhood in the 
weak topology of ~*. Namely, if the probabilities 
are the transmission probabilities for a collection of 
pure operations Ai (i = 1, ... I N) then we know 
that the state satisfies24 

(()(I) = 1, 

1({)(A~Ai) - Pil < Ei, 

(6) 

(7) 

23 This will be discussed in a separate paper. See also Ref. 3. 
24 We chose (arbitrarily) the normalization of the state. 

For the sake of symmetry with Eq. (7) we could write, instead 
of (6), equally well, 

1<1>(1) - 11 < EO· 

where Pi are the experimentally determined proba­
bilities and Ei the errors. If, alternatively, one wants 
to define the ensemble in terms of a single prepara­
tory operation then the discussion is mathematically 
somewhat more difficult. Let T be the preparing 
operation and RT its range (the image of ~*(+) 

under T). Then the only certain knowledge about 
the prepared state is that it lies in R T • To obtain 
definite state we need an operation with a one­
dimensional range. There are two reasons why such 
an ideal operation is impossible. The first has to 
do with the limited accuracy in the specification 
of T [the counterpart of the errors Ei in Eq. (7)]. 
The other comes from the special structure of our 
algebra ~. Namely, it is evident that no quasilocal 
operation can have a finite-dimensional range be­
cause an operation in a finite region has no effect 
on the physical situation in a causally disjoint region. 
While we are unable at the moment to give a precise 
analysis of the consequences of these two limitations 
we feel that the first one (limitation in accuracy) 
will result in the statement that we have in no 
actual experiment a precisely specified state but 
rather a weak neighborhood in ~* (+). This is the 
conclusion relevant to the remaining discussion in 
this section. The other limitation, arising from the 
special nature of the quasilocal algebra probably 
implies that there exist many unitarily inequivalent 
irreducible representations of ~. (See Sec. III and 
Ref. 5). 

The foregoing discussion leads us now to the 
following: 

Statement. Let R (1) and R (2) be two representa­
tions of ~ and Q1, Q2 the subsets of states which 
correspond to density matrices in the two repre­
sentation spaces. The two representations are 
physically equivalent if every weak neighborhood of 
any element of Q1 contains an element of 122 and 
vice versa. 

The notion of physical equivalence coincides 
exactly with that of "weak equivalence" as defined 
by Fell.

25 
We can apply Fell's equivalence theorem, 

i.e., two representations are weakly equivalent if 
and only if they have the same kerne1.26 

The conclusion is thus that all faithful representa­
tions of m are physically equivalent. The relevant 
object is the abstract algebra and not the representa­
tion. The selection of a particular (faithful) repre­
sentation is a matter of convenience without physical 

26 See Ref. 7 and the last paragraph of Appendix: 1. 
26 The kernel of a representation is the collection of all 

elements of ~ which are represented by zero. 
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implications. It may provide a more or less handy 
analytical apparatus. 

It also follows that we should consider only faith­
ful representations because, supposing for a moment 
that a nonfaithful representation with kernel K 
contained all physically relevant information then 
the only physically equivalent representations would 
be those with the same kernel. The relevant object 
is then not the algebra m: but the quotient m:/K. 
According to a well-known theorem this quotient 
is again a C·-algebra, and we should have taken 
this algebra in the first place instead of m:. 

As a final remark we might add that it appears 
natural to assume that m: is primitive, i.e., that it 
has at least one representation which is both faith­
ful and irreducible. It would be tempting to assume 
even that m: is simple, i.e., that all its representations 
are faithful. 27 

m. LOCAL AND GLOBAL PROPERTIES. 
SUPERSELECTION RULES 

It was pointed out in the introduction that all 
actual experiments involve only operations in finite 
space-time regions. Hence it is natural to introduce 
the notion of a "partial state with respect to a 
region." 

Definition. A partial state with respect to region 
B is a positive linear form over the algebra m:(B) 
or, alternatively speaking, an equivalence class of 
"global states" (positive linear forms over m:) which 
coincide on m:(B). 

The two alternative definitions are equivalent 
due to the following theorem which we use again 
later: 

Theorem.28 If m:l and m:2 are two C·-algebras and 
m:1 C m:2 then every state (positive linear form) 
over m:1 can be extended to at least one state over 
m:2 • A pure state over m:1 can be extended to a pure 
state over m:2 • 

It is of interest to understand the coupling be­
tween the partial states of different regions which 
results from algebraic relations between the various 
subalgebras m:(B). We shall call the partial states 
in regions Bl and B2 completely uncoupled if, 
choosing an arbitrary pair of equally normalized par­
tial states !pC!) E m:(B1)*c+) and !p(2) E m:(B2)*c+), 
one can find a global state !p which is an extension 

27 Compare B. Misra, "On the algebra of quasi-local 
operators of Quantum Field Theory," to be published. See, 
however, Appendix II for an example of a nonsimple algebra 
of physical interest. 

28 See, e.g., M. A. Neumark, Ref. 42. 

of both !p (1) and tp (2). The extreme opposite of this 
situation (Le., complete coupling) prevails if each 
partial state in Bl determines uniquely a partial 
state in B2 by the process of extension to ~ and 
restriction to m:(B2). 

On physical grounds we want: 

(i) If B2 is contained in the causal shadow of Bl 
then the partial states in B2 are uniquely 
determined by those in Bl (causality). 

(li) If Bl and B2 are causally disjoint then the 
partial states in the two regions are es­
sentially29 uncoupled (locality). 

Property (i) is equivalent to the algebraic require­
ment 

(8) 

for all regions B2 in the causal shadow of B1•
30 

Property (ii) is related to the local commutativity 
postulate but we do not know whether this postulate 
is already enough to guarantee the lack of coupling 
for partial states in causally disjoint regions or 
whether some further structure property is needed. 

We now give a brief intuitive (nonrigorous) dis­
cussion of some phenomena for which the distinction 
between global and local features plays a role. 

A. Existence of Unitarily Inequivalent Irreducible 
Representations of m: 

A pure state over m: corresponds to a vector in 
some irreducible representation space of m:. Two 
pure states belong to the same representation if and 
only if the one results from the other by transforma­
tion with an element of the algebra [in the sense of 
Eq. (4)].31 Otherwise they belong to representations 
which are unitarily inequivalent. 

We confine our attention to the states without 
infinitely extended correlations. These states are 
characterized by the property that an operation in 
region B does not affect the partial state in a far 

29 From the physical point of view it would not be necessary 
that the uncoupling is complete if the separation distance 
between Bl and B. is finite but only that it becomes complete 
in the limit of infinite spacelike separation. 

80 Let !!l1 and !!l. be two subalgebras of !!l and 1ll1J. 1ll.J. 
those subspaces of !!l* which are composed of the linear 'forms 
vanishing respectively on !!ll and !!l •. If the "partial states" 
over !!ll determine those over Ill. we have 

Thus 
!!l2J. ~ 1ll1J.. 

But !!l,J.J., considered a8 a subset of !!l, coincides with the 
uniform closure of !!(" i.e., with !!(, itself. 

81 Compare Appendix I, Kadison's Theorem, Ref. 53. 
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away region B' (apart from a change in normaliza­
tion).32 In symbols: 

(9) 

if Q and Q' belong to the algebras of two far-separated 
regions. 

Consider now an infinite collection of causally 
disjoint regions Bk • Let <1> be a pure state without 
infinitely extended correlations; the corresponding 
partial state in Bk will be denoted by I(Jk. It is clear 
that a transformation of <1> by an element from ~ 
will not change the asymptotic tail (k -+ (Xl) of the 
sequence of partial states I(Jk, apart from a common 
normalization factor, because any element of ~ can 
be approximated to arbitrary precision by an 
operation in a finite region. The asymptotic tail 
of the sequence of partial states I(Jk is thus common 
to all normalized states belonging to the same 
representation as <1>. It is a /lunitary invariant". 
On the other hand the lack of coupling between 
partial states in causally disjoint regions [property 
(ii)] suggests that there is an enormous variety of 
possible asymptotically different sequences I(Jk' This 
gives us then many unitarily inequivalent repre­
sentations of ~. They differ in the global aspects 
of their states but this difference is irrelevant as 
long as we are interested only in experiments in 
finite regions ("physical equivalence" of all these 
representations) . 

B. Lorentz Transformations 

As postulated under item (5) in the introduction 
we have for every element L of the inhomogeneous 
Lorentz group an automorphism of the algebra: 
A -+ A L. The automorphism defines a corresponding 
transformation in the state space, namely 

(10) 

This is a linear transformation in the Banach space 
~* which preserves the norm and transforms the 
positive cone ~* (+) into itself. Since 

(11) 

we get in this wayan /lantirepresentation" of the 
Lorentz group (by isometric operators in a Banach 
space). In the special case when L is a translation 
by a 4-vector x we write A Z and ipz for the trans­
formed quantities. 

Since Lorentz transformations are global opera-

12 "Far away" means the limit of an infinite spacelike 
separation. 

tions, affecting the far away regions as strongly 
(or even stronger) than the regions nearby, they do 
not correspond to elements in the quasilocal algebra 
~. Indeed, if we assumed that there is an element 
U(L) in ~ such that 

A L = U(L)A U-1(L) for all A E ~, (12) 

we would get an immediate contradiction.33 We 
could then approximate U(L) by an operation e 
in a finite region B such that IIU(L) - ell < E. 

Taking A E ~(B') with B' causally disjoint from 
B, Eq. (12) would imply 

IIAL - All < 2 IIAII E for all A E ~(B'), 

which is not true. 
We may assume, however, that there are ele­

ments in ~ which produce the same effect as a 
Lorentz transformation within an arbitrarily chosen 
finite region B. Denoting such an element by UB(L) 
we have instead of (12) 

AL = UB(L)AU1/(L) for all A E ~(B). (13) 

of course the UB(L) are not uniquely determined 
by (13). 

We may ask next whether the Lorentz trans­
formations can be represented by unitary operators 
[again denoted by U(L)] in an irreducible repre­
sentation space of the algebra ~. This is the situa­
tion assumed in the usual analytic apparatus of 
quantum field theory. We may call it "Lorentz 
invariance of the representation" as distinguished 
from the Lorentz invariance of the algebraic theory 
which was postulated in the introduction. From the 
discussion A it follows that this is only possible if 
all the states I(J belonging to the representation 
have the property84 

(14) 

when the region B is moved to infinity keeping its 
shape fixed. In other words, for such a representation 
all partial states in far away regions must be Lorentz 
invariant. The requirement that the Lorentz trans­
formations shall be represented by unitary operators 
in the Hilbert space (Lorentz invariance of the 
representation) is thus a very powerful restriction 
eliminating most of the representations discussed 
under A). 

33 An automorphism of the type (12) is called an inner 
automorphism of the algebra. Our argument here shows that 
the Lorentz transformations are outer automorphisms. 

" The symbol B9 is used here to denote the partial state 
in B resulting from the restriction of 'P. 
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In a Lorentz-invariant irreducible representation 
of ~, the Lorentz operators U(L) are, of course, ob­
tainable as strong limits of the quasilocal operators 
since the strong closure of the collection of repre­
sentatives of ~ is the ring of all bounded operators 
on the Hilbert space. Consider a family of regions 
Bn such that Bn+l ~ Bn and B", = V Bn is the 
whole of Minkowski space. The representatives of 
the corresponding family UB.(L) [see Eq. (13)] form 
a strongly (but. not uniformly) converging sequence 
of operators due to the fact that every state in the 
representation space has the asymptotic property 
(14). The limit of the sequence is U(L). In other 
representations in which the states have different 
asymptotic properties this sequence does not con­
verge at all. This illustrates how global operations 
such as Lorentz transformations may be defined in 
suitable representation spaces as strong limits of 
quasilocal operations. The strong convergence of 
such a sequence of operators arises from the (com­
mon) asymptotic properties of all the states in the 
representation space. Strong convergence depends 
on the representation whereas uniform convergence 
does not. 

c. Supers election Rules 

In the usual formalism of Quantum field theory 
a superselection rule means that there are operators 
in the Hilbert space which commute with all ob­
servables. Typical examples of such "superselecting 
operators" are the total electric charge or the total 
baryon number. This customary representation of 
the algebra of observables is reducible. It can be 
decomposed into irreducible ones which we shall 
call "sectors." Each sector corresponds to a definite 
numerical value of the charge.35 

We note first that the charge (as well as every 
other superselecting operator) is a global quantity. 
The distinction between the different sectors can 
therefore not be made by means of experiments in 
finite regions. A simple argument shows then that 
every sector is physically equivalent to every other 
sector. Let us demonstrate this for the two sectors 
corresponding to charge 3 and charge -1, respec­
tively. We have to show that given an arbitrary 
state q; of charge 3 and an arbitrary finite set of 
elements A; E ~ we can find a substitute state 'P' 

with charge -1 so that the expectation values of 
the A i in the two states differ by less than an 
arbitrarily prescribed tolerance E. The way to con-

36 For the sake of simplicity we pretend that the electric 
charge is the only superselected quantity and thus use the 
word "charge" in lieu of "superselected quantities." 

struct q;' is physically evident. We change the 
physical situation described by q; adding 4 ele­
mentary particles of negative charge in a remote 
region of space. The effect of this added charge on 
the expectation values of the quasilocal quantities 
Ai tends to zero as the region is moved to infinity. 

We conclude then from Fell's equivalence theorem 
that each single sector is a faithful representation 
of ~.36 A single sector contains already all relevant 
physical information. We note incidentally that we 
have here an example of a quasilocal algebra which 
has (at least) a denumerable infinity of unitarily 
inequivalent, Lorentz-invariant, faithful, irreducible 
representations (the various sectors). 

In the standard treatment of field theory one 
considers the direct sum of all the sectors. If ()n 
is the representation space of the sector with charge 
n then one uses the Hilbert space 

(15) 

Let us denote the representation of ~ in () by R, 
the range of this representation (i.e., the set of 
operators in () representing the elements of ~) by 
R(~). It is instructive to observe now the difference 
between weak and uniform closure. Since ~ is a 
C*-algebra R(~) is already uniformly closed. In 
the decomposition (15) the general element is of 
the form 

R(A) = (16) 

o 

where Rn is the irreducible representation of sector n. 
Since each Rn is faithful, these irreducible repre­
sentations are rigidly coupled together. In other 
words, a single one of the suboperators Rn(A) 
uniquely determines A and hence it fixes all the 
other Rm(A). Thus in particular the projection 
operator Pn on the subspace ()n does not belong to 
R(~) because the only element of R(~) which is 
zero in some sector is the zero operator on (). Let 
us consider now the weak (or strong) closure of 
R(~). This is the von Neumann ring generated by 
R(~) and can be alternatively obtained as the bi­
commutant R(~)". Since the representations Rn 
are irreducible and unitarily inequivalent Schur's 
lemma implies that the commutant R(~)' consists 

36 The theorem tells us that one sector is equally as 
faithful as the collection of all sectors taken together. 
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of all operators of the form ~ c"P .. where the Cn are 
an arbitrary bounded sequence of complex numbers 
and P" is the projector on ~ ... Taking the commutant 
again we find that a general element of R(~)" is 
of the form 

K= o (17) 

where the K" are arbitrary bounded operators on 
the corresponding sectors (which can be chosen 
completely independent of each other). Thus the 
weak (or strong) closure of R(~) is the (uncoupled) 
product37 of all the full matrix rings m(~n)' It con­
tains in particular all the projectors P", all the 
bounded functions of the charge as well as the 
Lorentz operators U(L) ("global" quantities). 

IV. COMPARISON WITH OPERATOR APPROACH 
TO QUANTUM FIELD THEORY 

The postulates of a purely algebraic theory which 
have been stated so far [items (1) through (6) in 
the introduction, and (i) and (ii) in Sec. IIIl are 
not as powerful as those in other approaches to 
quantum field theory (Wightman's axioms or those 
of Ref. 2). In some respects this is good because a 
few irrelevant restrictions which are customarily 
imposed are eliminated. In other respects, however, 
the scheme as presented here is quite incomplete. 
It does not yet contain a stability condition and we 
have not formulated the counterparts of the finer 
structure properties which can be stated in the 
operator form of the theory. We shall point out 
now some of the features which are lacking in the 
present formulation. 

The bridge between the algebraic approach and 
the customary analytic apparatus is the assumption 
that there exists a state <Po over the algebra ~ which 
is called the physical vacuum state and is supposed 
to have the following properties: 

(a) <Po is Lorentz-invariant, i.e., (<poh = <Po. 
({3) <Po is a vector state of an irreducible, faith­

ful representation of ~ in a separable Hil­
bert space ~. 38 

----
37 In the sense of Dixmier: Les Algebres d'operateurs dans 

l'espace Hilbertien (Gauthier-Villars, Paris, 1952), Chap. I, 
Sec. 2.2. 

88 The representation is determined by <1>0 via the GNS 
construction. See Appendix I, Ref. 59. It is irreducible if <1>0 is 
pure. The separability would follow from the irreducibility if 
the algebra were separable in the norm topology. 

('Y) The Hamiltonian39 is a positive-semidefinite 
operator in ~. 

It appears to us that the existence of a vacuum 
state with properties (a) and «(3) is no sine qua non 
for a physically meaningful theory. In particular, 
in a theory describing among other things particles 
with zero rest mass one may have doubts as to 
whether the assumptions (a) and «(3) are physically 
reasonable.40 On the other hand, it is clear that 
some stability condition like ('Y) is absolutely es­
sential. The condition ('Y) has also been one of the 
most useful tools in Wightman's approach. 

Let us compare now the algebraic approach with 
that of Ref. 2 which is conceptually almost identical 
but uses von Neumann rings R(B) instead of 
abstract C*-algebras ~(B). Given any specific ir­
reducible, faithful representation of ~ (say the 
representation Ra) we have immediately also a 
system of von Neumann rings which we denote 
by Ra(B) in the representation space ~a. The 
ring Ra(B) is just the weak closure of the concrete 
C*-algebra of operators Ra (~(B) I [the representa­
tives of ~(B) in the representation Ral. This ring 
system will satisfy the conditions of locality and 
causality; namely R a (B1) and R a (B2) commute if 
B1 and B2 are causally disjoint, and Ra(B2) C 
R a(B1) if B2 is the causal shadow of B1. This fol­
lows immediately from the corresponding relations 
for the algebras ~(B). However, within the set of 
von Neumann rings one has one important opera­
tion which has no direct counterpart in our family 
of C*-algebras. This is the passage from a ring R 
to its commutant R'. This operation has been ex­
tensively used in Ref. 2 to formulate more detailed 
structure relations of the ring system which are 
very interesting because they open a way for a 
discussion of gauge groups and a distinction be­
tween theories with interaction from trivial theories 
in terms of local observables.41 One typical example 
of such a relation is the "additivity" 

Considering only the special case in which B1 and 
B2 are causally disjoint this relation may be assumed 

89 It follows from (a) that the representation obtained by 
the GNS construction from <1>0 is Lorentz-invariant. Hence 
there exists a I-parameter group of unitary operators U(r) 
representing the time translations in (i. The Hamiltonian is 
the infinitesimal generator of this group. 

40 This question was studied in Ref. 8 but the argument 
given there is inconclusive in some respects. 

41 For some conjectures in this direction see R. Haag, Ann. 
Physik 11/ 29 (1963) and Proceedings of the Conference on 
Analysis III Function Spaces, Ma~sachusetts Institute of 
Technology, Cambridge, Massachusetts, 1963. 
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to hold for theories without superselection rules but 
to fail, for instance, in a theory with charged fields. 

The question is therefore whether such relations 
as (18) can be given a meaning in the purely algebraic 
approach, in other words, whether they are inde­
pendent of the particular representation a. Since 
the double commutant is the same as the weak 
closure this would be the case if all (faithful) repre­
sentations of m: were "locally quasi-equivalent." The 
notion of "quasi-equivalence" of two representations 
was introduced by Mackey and is described in 
Appendix 1. It is more restrictive than weak equiv­
alence and less restrictive than unitary equivalence. 
By "local" quasi-equivalence of two representations 
we mean that for any (finite) region B the two 
representations of the subalgebra m:(B) are quasi­
equivalent whereas the two representations of the 
full algebra m: need not be quasi-equivalent. 

As pointed out in the Appendix, one may charac­
terize quasi-equivalence also by the fact that the 
sets of states which appear as density matrices in 
the different representations are identical. Thus, the 
assumption of local quasi-equivalence of all repre­
sentations means that each finite region B has a 
(universal) set of partial states which corresponds 
to the collection of density matrices in an arbitrary 
(faithful) representation of m: restricted to m:(B). 
In more intuitive language this assumption means 
two things. On the one hand, the results of measure­
ments in a fixed finite region B shall be uniformly 
unaffected if one changes the state by "adding 
particles behind the moon," i.e., 

I~(A) - ~'(A)I < E IIAII for all A E m:(B), (19) 

if ~' results from ~ by a unitary operation in a very 
distant region. Secondly, there shall be no other 
limiting procedure leading to the construction of 
inequivalent irreducible representations of m: besides 
the one involving large separation in position space 
and discussed in the last section. In particular one 
might wonder about the asymptotic limit for high 
energies. Is it possible to have states which differ 
in the asymptotic tail of their high-energy behavior 
(i.e., which give different expectation values for 
local operations involving "infinitely high" energy 
transfer)? The answer is probably no. Thus the 
assumption of local quasi-equivalence seems to us 
at the moment not unreasonable. 

Another even stronger, assumption which is not 
contradicted by any of our present knowledge is 
that of "local unitary equivalence" of all irreducible, 
faithful representations of m:. This would mean that 
if Rand S are two such representations of m: then 

R(m:(B» and S(m:(B» are unitarily equivalent for 
every finite B, however, in such a way that no inter­
twining operator exists which is independent of the 
region B. 
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APPENDIX I. C·-ALGEBRAS" 

A complex (or real) algebra m: is a complex (or 
real) linear space such that to each ordered pair A, 
B E m: there corresponds an element ABE m:, 
called their product, which is bilinear and associative 
(in general not commutative). In the special case 
where AB = BA for all A, B E m:, m: is said to 
be Abelian. m: is a *-algebra43 if to each A E m: 
there corresponds a A * E m:, called the adjoint 
of A, so that A ~ A * is a conjugate-linear mapping 
with the properties A ** = A and (AB)* = B* A * 
for any A, B E m:. m: is a normed algebra if to each 
A E m: there corresponds a nonnegative number 
IIAII, called the norm of A, in such a way that 
IIA II > 0 whenever A ~ 0 and, for any two A, 
B E m: and any number A, IIA + BII s IIA II + IIBII, 
IIAAII = IAI IIAII and IIABII s IIAII·IIBII. Taking 
IIA - BII to be the distance of two elements A, B 
one defines on ~( the topology of a metric vector 
space called its uniform or norm topology. If m: is 
both a *-algebra and a normed algebra we call it 
a *-normed algebra44 provided IIA * II = IIA II for all 
A E m:. A very important class of *-normed algebras, 
that of Banach *-algebras45 is obtained by requiring 
completeness in the norm topology (i.e., convergence 
of all Cauchy sequences of elements of m: with 
respect to the norm to some element in m:). One 
easily sees that any norm-closed *-algebra of bounded 

42 For general sources of information on C*-algebras see 
M. A. Neumark, Normierte Algebren (VEB Deutscher Verlag 
der Wissenschaften, Berlin, 1959), Chap. V, Sec. 24; and 
C. E. Rickart, General Theory of Banach Algebras (D. Van 
Nostrand, Inc., New York, 1960), Chap. IV, Sec. 8. In 
general we use Rickart's terminology. 

43 Called symmetrische Algebra by Neumark. 
44 In Rickart's terminology. Neumark's is: normierte 

symmetrische Algebra. 
45 In Rickart's terminology. Neumark's is: vollstandige 

normierte symmetrische Algebra. 
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operators on a Hilbert space is a Banach *-algebra 
(with respect to the usual addition, scalar multipli­
cation, product, adjoint operation, and norm of 
bounded operators). However, the converse is not 
true and it has been shown by Gelfand and N eu­
mark46 that by requiring IIA * A II = IIA W for all 
A E ~ one singles out those particular Banach 
*-algebras which are isomorphic to (i.e., concretely 
realizable as) norm-closed *-algebras of bounded 
operators on some Hilbert space. These algebras 
are the interesting ones for quantum theory and 
we will call them C*-algebras.47 A typical example 
of a C*-algebra is the algebra m«()) of all bounded 
operators on some Hilbert space (). 

A linear mapping L of an algebra ~ into an 
algebra ¥l1 which preserves products is called a 
homomorphism. If ~ and ~1 are *-algebras and ad­
joints are mapped into adjoints, we speak of a 
*-homomorphism. The kernel of the homomorphism 
L is the set of elements of ~ which are mapped into 
the zero of ~1' A (*-)homomorphism is one-to-one 
if and only if its kernel reduces to zero, in which 
case it is called a *-i80morphism. A linear subspace 
J of an algebra ~ is a left (resp. right, resp. two­
sided) ideal if A E J and B E ~ imply BA E J 
(resp. AB E J, resp. BA and AB E J). If ~ is 
a *-algebra and A E J implies A * E J, we speak 
of a *-ideal. Two-sided ideals (*-ideals) are in 
one-to-one correspondence with homomorphisms 
(*-homomorphisms), the first being the kernels of 
the latter. Given a two-sided ideal C*-ideal) J 
of ~, the corresponding homomorphism (*-homo­
morphism) is obtained by assigning to each ele­
ment A E ¥l its class modulo the elements of J. 
The algebra (*-algebra) of these equivalence classes 
is denoted ¥l/ J and called the quotient of ~ by J. 
A representation R of the algebra ~ on a linear 
space () is a homomorphism of ~ into the algebra 
of linear operators on (): to each A E ~ R assigns 
a linear operator R(A) on () the correspondence 
A ~ RCA) respecting linear combinations and 
products. RCA) is called the representative of A 
in R and the set of representatives of all A E ~ 
in R is called the range of R. R is faithfuL if it is 

(8 I. M. Gelfand and M. A. Neumark, Mat. Sb. 12, 197 
(1943). 

47 Here we depart from Rickart's terminology who calls 
B*-algebra the abstract C*-algebra and reserves the term 
C"'-algebra for a concrete norm-closed algebra of operators on 
a Hilbert space (we speak in this case of a concrete C* -algebra). 
Our C"'-algebras (Rickart's B*-algebras) are called by 
Neumark vollref!Y-Uire vollstandige Algebren. Note that the 
condition IIA *AII = IIAI12 is evidently fulfilled in an operator 
algebra and that the distinction between abstract and con­
crete C"'-algebras is important because different concrete 
C"'-algebras can define the same abstract C*-algebra. 

one-to-one and algebraically irreducible if the only 
subspaces of () invariant for all RCA) are {OJ and 
(; itself. In the case where ~ is a *-algebra, (; is a 
Hilbert space and R is a *-homomorphism into m«(;) 
we speak of a *-representation and call R (topo­
logically) irreducible48 if {O} and () are the only 
closed subspaces of (; invariant for all R(A). Further­
more, we call R continuous in case IIR(A)II S C IIAII 
for all A E ~ and some positive constant C. One 
shows that every *-representation of a Banach 
*-algebra49 is continuous. An ideal J C ¥l is called 
primitive if it is the kernel of an algebraically ir­
reducible representation. ~ itself is primitive if {OJ 
is a primitive ideal, i.e., if ~ admits a faithful 
algebraically irreducible representation. The radical 
of an algebra ~ is the intersection of all its primitive 
ideals. In the case where ~ is a *-algebra its *-radical 
is the intersection of the kernels of all topologically 
irreducible *-representations. ~ is simple if it con­
tains only the trivial ideals {OJ and ~ itself. It is 
semisimple (*-semisimple50

) if its radical C*-radical) 
reduces to zero. Simplicity obviously implies that 
all representations are faithful which implies primi­
tivity in the case of a Banach *-algebra. Semi­
simplicity (*-semisimplicity) means only that the 
collection of all algebraically irreducible representa­
tions (topologically irreducible *-representations) is 
faithful in the sense that no two different elements 
of ~ can have the same representative in all of them 
(we also say that the irreducible representations 
separate ~). 

The relation between separation properties of 
representations and the ideal structure of ~ is 
greatly simplified in the case of C*-algebras due to 
several important peculiarities. First, every *­
isomorphism of a C*-algebra into another C*­
algebra is norm-preserving. Second, every closed 
ideal J is a *-ideal and the corresponding quotient 
algebra ~IJ (equipped with its natural norm 

IIA + JII = inf IIA + hiD 
hE J 

is itself a C*-algebra.51 Combining these facts, one 
finds that every *-homomorphism of a C*-algebra 
has a uniformly closed range. In particular, the 
range of a *-representation of a C*-algebra is itself 
a C*-algebra, the representation being norm-pre-

48 We always use the word irreducible to mean topologically 
irreducible. 

(9 Whether or not !!l contains an identity. See Rickart 
(Ref. 42), Theorem (4.1.20). 

&0 Neumark uses reduziert for *-semisimple and redu­
zierendes Ideal for "'-radical (in the case of Banach "'-algebras). 

61 M. A. Neumark, Ref. 42, Chap. V, Sec. 24, Theorems 
6 and 3. 
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serving if it is faithful. Further, a C*-algebra is 
always semisimple and *-semisimple (its radical and 
*-radical both reducing to zero).52 Another important 
result, due to Kadison,53 is that every topologically 
irreducible *-representation of a C*-algebra is 
algebraically irreducible. Finally, every algebraically 
irreducible representation of a C*-algebra in a com­
plex linear space is algebraically equivalent to a 
*-representation in a Hilbert space. Therefore every 
primitive ideal is the kernel of an irreducible *­
representation. A primitive C*-algebra can accord­
ingly be defined as a C*-algebra having at least one 
faithful irreducible *-representation. 

Two representations (*-representations) Rand S 
of & on the respective spaces oS') and ~ are called 
algebraically (unitarily) equivalent if there exists a 
regular linear (unitary) operator U from oS') onto ~ 
such that 

UR(A) = S(A)U for all A E &. (20) 

Any linear (bounded linear) operator U from oS') 
into ~ satisfying (20) is called an intertwining opera­
tor for Rand S. The set of such intertwining opera­
tors will be denoted by meR, S).54 In the case of 
*-representations, one of the two following situations 
prevails: either m (R, S) = {O} or there exist in­
variant closed subspaces oS')l and ~l such that the 
restrictions of Rand S on those subspaces (called 
subrepresentations of Rand S) are unitarily equiv­
alent. In particular, if Rand S are irreducible and 
inequivalent, meR, S) = {O} and meR, R) consists 
of the multiples of unity (those two facts being 
generalizations of Schur's lemma). Note that 
meR, R) is a von Neumann ring, namely the com­
mutant of R(&). 

Two *-representations Rand S of & will be called 
disjoint55 if meR, S) = {O}, i.e., if Rand S contain 
no subrepresentations which are unitarily equiv­
alent. We consider now the decomposition of a 
representation into disjoint parts. Let R be a *­
representation on oS') and oS')l be a (closed) subspace 
of oS') with projector E. oS')l is invariant in R if and 
only if E E meR, R). In that case its orthogonal 
complement oS')~ is also invariant and the restrictions 
of R on oS')l and oS')~ (subrepresent.ations) are disjoint 
if and only if E is in the center of meR, R) (the 
center of an algebra being the set of its elements 
which commute with all others). A *-representation 

i2 M. A. Neumark, Ref. 42, Chap. V, Sec. 24, Theorem 4. 
63 R. V. Kadison, Proc. Nat!. Acad. Sci. U. S. 43, 273 

(1957). 
IH See G. W. Mackey, "The Theory of Group Representa­

tions," University of Chicago, mimeographed lecture notes. 
16 See Mackey, Ref. 54. 

R of & is called primary55 if the center of meR, R) 
contains only the multiples of unity (so if no two 
subrepresentations of R are disjoint). We have seen 
that the range R(&) of R is closed in the norm­
topology of operators on oS'), but it is in general not 
closed in the weak topology of operators on ~ (the 
weak closure of R(&) is the von Neumann ring 
R(&)" which contains in general many more opera­
tors than R(~l) itself). R is primary if R(&)" is a 
factor in the sense of von Neumann. 

Two representations Rand S of & are called 
quasi-equivalent56 if they have the same kernel (i.e., 
if their ranges are *-isomorphic) and if this *­
isomorphism extends to the weak closures of the 
ranges in the respective weak topologies of operators 
on the representation spaces. The *-representations 
Rand S are quasi-equivalent if and only if no 
sub representation of the one is disjoint from the 
other. If Rand S are primary then they are either 
quasi-equivalent or disjoint. 

A role of primary importance in the study of a 
Banach *-algebra is played by its positive forms. A 
linear form <I> on & is called continuous if I <I> (A) I ::; 

C IIAII for all A E & and some positive constant C. 
The smallest such constant is denoted by 11<1>11 and 
called the norm of <1>. Under this norm the set of 
all continuous forms on & is a Banach space called 
the dual space of & and denoted by &*. (The Banach 
space topology of &* is called its uniform or norm 
topology.) Another topology of interest on &* is 
its weak topology (with respect to &) characterized 
by the pseudo-norms N A (<I» = I <I> (A) I where A 
runs through & (or by the complete set of neighbor­
hoods of zero V(A,,'II AI, A 2 , ••• , An E &, E > 0, 
where V(AI •• , consists of all <I> E &* such that 
I<I>(A;)I < E, i = 1, 2, ... , n). A linear form <I> is 
positive if <I> (A * A) ~ 0 for all A E &. If & has a 
unit J the continuity of <I> follows from the positivity 
and one has 11<1>11 = <I>(J). Positive forms are also 
ipso facto continuous for C*-algebras with or without 
unit.57 The set of all positive continuous forms on 
& (or states on &) is called the positive cone of &* 
and denoted by &* (+). We will denote by ~ and 1; 
the subsets consisting of all <I> E &* such that 
11<1>11 ::; 1 and 11<1>11 = 1, respectively (~ is the unit 
ball of &*). By Tychonov's theorem &* (+) n ~ 
(and ~* (+) n 1: if ~ has a unit) are compact subsets 
of &* in its weak topology. As a compact convex 
set ~*(+) n 1; has extremal elements and is equal 

66 For the notion of quasi-equivalence, see Mackey, Ref. 54, 
Chap. I. 

.7 See C. E. Rickart, Ref. 42, Theorems (4.5.14), (4.5.11), 
and (4.8.14). 
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to the weak closure of their convex hull (theorem of 
Krein-Milman). The state <I> E ~*(+) f'""\ 1: is called 
extremal or pure if it cannot be written as Xl <1>1 + X2<1>2 
with <1>1, <1>2 E ~*(+) f'""\ 1:, <1>1 ~ <1>2, 0 < Xl < 1, 
Xl + X2 = 1). 

The importance of positive linear forms for 
Banach *-algebras lies in their connection with 
*-representations. Each *-representation of a *­
algebra is (by transfinite induction) the direct sum 
of *-representations all of which (except the null 
representation) are cyclic.58 Now for a Banach 
*-algebra with approximate unit, in particular for 
a C*-algebra, giving a positive (ipso facto contin­
uous) linear form <I> amounts to the same thing as 
specifying a cyclic representation R and a cyclic 
vector ~. This representation is irreducible if and 
only if <I> is pure. Given R and ~ we have <I>(A) = 
(~ IR(A)I O. Conversely, given <1>, its null space in 
(i.e., the set of elements A E ~forwhich <I>(A*A) =0 
or, equivalently, for which <I> (A * B) = 0 for all 
B E ~) is a left ideal in ~ and one recovers con­
sistently the vectors R(A)~, their scalar products 
(R(AH I R(BH), and the operator R(C) acting on 
R(AH by the following identification: 

vector R(A) ~ ~ class (modulo in) of the 
algebraic elements A + in, 

scalar product (R(BH I R(AH) = <I>(B*A), 
action of operator R(C)R(AH ~ CA + in. 

~ is then constructed by completion and the opera­
tor R(C) in the complete ~ by continuous extension. 
The cyclic vector ~ corresponds to I + in if I exists 
and is otherwise obtained with the help of an ap­
proximate unity. 59 

It is useful to characterize the relations between 
different *-representations of a C*-algebra in terms 
of certain subsets of ~* determined by their repre­
sentation spaces. Let R be a *-representation of ~ 
on the Hilbert space ~R. Given 'l' E ~R and 
A E ~ we denote by "'v(A) the expectation value 
of R(A) in the vector 'l': 

"'v(A) = ('l'1 R(A) I'l') = Tr R(A) 1'l')('l'I. 

We have thus defined a positive form "'v on ~ which 
we call the vector state determined by 'l' E ~R. 

When 'l' runs through ~R' "'v runs through a subset 

68 A representation R in the space (I is called cyclic with 
cyclic vector E E (I if the set of vectors R(I2l) E is dense in (I. 

60 This construction is due to I. M. Gelfand and M. A. 
Neumark, Isvertija Ser. Mat. 12, 445 (1948); and I. E. Segal, 
Bull. Am. Math. Soc. 53, 73 (1947). We call it the GNS con­
struction. See M. A. Neumark, Ref. 42, Chap. IV, Sec. 
17.3 or, for the case of an algebra without unit, C. E. 
Rickart, Ref. 42, Chap. IV, Sec. 5. 

fJl(R) of ~*(+) which can be shown to be uniformly 
closed in ~*. For cyclic representations fJl(R) de­
termines R up to unitary equivalence; for two cyclic 
representations Rand R' of m: to be unitarily equiv­
alent, it is necessary and sufficient that w(R) = 
fJl(R,).60 We now pass from w(R) to its convex hull 
conv {w(R) I (i.e., we consider all finite linear com­
binations of its elements with positive coefficients). 
If we close this convex hull respectively in the 
uniform and in the weak topology of ~*, we get two 
sets of states conv {w(R) I and conv {w(R) I which 
respectively determine R up to quasi-equivalence 
and weak equivalence.61 The elements of the uni­
form closure conv {w(R) I can be characterized as 
the set of states <I> of the form 

(21) 

where <1>01> is any positive linear operator on ~R with 
finite trace (the norm 11<1>11 being equal to the trace 
of <l>op" These states will be referred to as the density 
matrices in the representation R. The elements of 
conv I w(R) I are correspondingly the density matrices 
of finite rank in R. The linear spans of conv I w(R) I 
and conv I w(R) I are obtained by taking <1>01> in (21) 
to be respectively the operators of the trace class 
and of finite rank on ~R. We will denote them 
accordingly by X(~, R) and g:(~, R). One has 
X+ (~, R) = conv I w(R) I and g:+ (~, R) = 
conv (w(R) I where + indicates the restriction to 
positive elements. Let e(R), t'eR), r(R), tW(R) 
denote the topologies respectively defined on ~ by 
the strongest, the strong, the u-weak and the weak 
topologies of operators on ~R (those topologies are 
not separating if R is not faithful). X(~, R), resp. 
g:(~, R) [X+(~, R), resp. g:+(~, R)] can be charac­
terized as the set of linear forms on ~ (of positive 
linear forms on ~) continuous with respect to either 
e(R) or t 8 (R), resp. either tW(R) or tW(R). So quasi­
equivalence of Rand R' means that e (R) = t8 (R'), 
or equivalently t'(R) = nR'). 

Let 8 and T be two *-representations of the C*­
algebra ~, and let Ker (8) and Ker (T) be their 
kernels. Fell's equivalence theorem states that 
Ker (S) ~ Ker (T) is equivalent to w(8) C 

conv I weT) I, or alternatively to w(S) f'""\ :E C 

conv {w( T) f'""\ :E I or again to w(S) f'""\ 1: c 
conv {w(T) n :E}. If this is the case Fell calls S 
weakly contained in T. If Sand T are weakly con-

60 These results can be inferred from R. V. Kadison, 
Trans. Am. Math. Soc. 103, 304 (1962). w(R) C w(R') means 
that R is unitarily equivalent to some subrepresentation of R'. 

61 For this characterization of quasi-equivalence, see Z. 
Takeda, Tohoku Mat. J. 6, 212 (1954). 
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tained in each other they are weakly equivalent 
(for us physically equivalent). If 8 is cyclic with 
cyclic vector '11 it is sufficient for 8 to be weakly 
contained in T that "''l' E conv {6>(T)}. If 8 and T 
are irreducible and 8 is weakly contained in T 
then 6>(8) is already contained in the weak closure 
of 6>(T). 

APPENDIX II. NONSIMPLICITY OF THE FERMION 
CURRENT ALGEBRA" 

A. Finite-Dimensional Case 

Let ~ be an n-dimensional metric vector space 
over the complex numbers. Corresponding to each 
vector x from ~ we consider two algebraic elements 
a*(x) and a(x) (adjoints of each other). They shall 
satisfy the commutation relations of creation and 
destruction operators in Fermi statistics, 

a*(x)a(y) + a(y)a*(x) = (x, y), 

a*(x)a*(y) + a*(y)a*(x) = 0, 
(22) 

and the "creators" a*(x) shall depend linearly on x. 
The *-algebra generated by the a* and a will be 
denoted by <£.63 A representation of <£ is obtained 
(the standard representation in physical applica­
tions) by stipulating that the representation space 
&(~) shall contain a vector <Po satisfying 

a(x)<po = 0 for all x E ~ (23) 

and that the other vectors of &(<r) are obtained 
from <Po by application of polynomials of the a*. 
From the commutation relations one infers im­
mediately that the space & has 2" dimensions, that 
<£ has 4" linearly independent elements and is iso-

52 We are indebted to Professor H. Araki for pointing out 
to us the main facts described in this appendix. 

58 ~ is the Clifford algebra over the space (,i Ee ~ with 
respect to the bilinear scalar product 

g(x Ee il, x' Ee il') = ! I(x, v') + (y, x) I x E (,i, Y E (,i. 
Here ~ is the "complex conjugate" of (,i; i.e., it is 

isomorphic to (,i as an additive group: 
x E (,i +-+ X E ~, 

but its scalar multiplication reverses the sign of i: 

«a + i{J)x) = (a - i{J)x. 

Since (x, y) is Hermitian symmetric the form g is bilinear. 
(5: can be defined as the quotient of the tensor algebra over 
(,i Ee i by an ideal ~ which is generated by the tensors 
~ X ~ - g(~, ~)with ~ E (,iEe~. One has a*(x) = xEe o mod 
~ and a(y) = 0 Ee il mod ~. By extension of the adjoint 
operation 

one defines on (5: the structure of a *-algebra. Equation (23) 
defines a faithful realization of (5: by the linear operators on 
the space .o(~) which latter coincides with the Grassmann 
algebra over ~. 

morphic to the full matrix ring over &. Thus ~ 
is simple. 

If II E <£ is a product of p creators and q an­
nihilators (in any order) we define the grade of II 
to be the difference p - q. <£ thus becomes a graded 
algebra whose zero-grade part will be called <£0' 
<£0 is represented in & by operators which leave 
the homogeneous subspaces &" invariant. (aJ" is 
that subspace which is generated from <Po by homo­
geneous polynomials of the a* of order p; p runs 
from 0 to n.) Calling R,,( <£0) the restriction of the 
representation of <£0 to &" one sees by counting 
dimensions that the R" are a separating family of 
irreducible inequivalent representations of <£0' There­
fore <£0 is a semisimple (but not simple) finite 
dimensional algebra. Note that <£0 can be regarded 
as the "algebra of currents" where the "current" 
j(K) corresponding to the linear operator K on <r 
is defined by 

j(K) = E (x. IKI xi)a*(x.)a(xi) (24) 
i .A; 

(x; being a complete orthonormal basis of <r). 

B. Infinite-Dimensional Case 

Instead of the finite-dimensional <r we take now 
an infinite-dimensional Hilbert space (l. For any 
finite dimensional subspace <r C (l we can consider 
the algebra <£(<r) has previously defined and one 
sees easily that for <r2 :) <rl the algebra <£(<r,) is 
is canonically embedded in <£(<r2) (as a normed 
*-algebra). Thus we can define <£«(l) as the com­
pletion of the union of all the <£(<r) for the finite­
dimensional subspaces <r C (l. The fact that each 
<£(<r) is simple implies that all *-representations of 
<£«(l) are faithful and isometric, i.e., that also 
<£«(l) is simple.64 . 

In the case of a free Dirac field (l is the direct 
sum of two spaces (ll and (l2 which correspond, 
respectively, to the states of a single electron and 
to those of a single positron. We are interested now 
in the zero grade part of <£«(l). This algebra <£0 
may be regarded as the algebra of currents in the 
theory of a free Dirac field. We consider the two 
familiar irreducible representations of <£: 

(1) the old-fashioned one which results if we 
assume the existence of a state <Po satisfying 

a(x)<po = 0 for all x E (); (25) 

(2) the "charge symmetric" one in which one 
assumes a state '110 satisfying 

----
lit Since it is known to have many inequivalent irreducible 

representations it is an NGCR-algebra. 
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a(x)'lro = 0 for all x E ~lt 

a*(x)'Ir = 0 for all x E ()2. 
(26) 

Both representations, restricted to <£0, split up 
into irreducible parts corresponding to the different 
values of the charge. Now in Case 1 none of those 
subrepresentations of (to is faithful. In the subspace 
corresponding to charge n all operators having more 

than n annihilators on the right have zero repre­
sentatives. Thus (to has nontrivial ideals and is 
accordingly not simple. On the other hand, in the 
charge-symmetric representation of <£ (Case 2) all 
the subrepresentations of <£0 corresponding to a 
fixed value of the charge are faithful. This is an 
immediate consequence of the semisimplicity of the 
(t«i) for finite-dimensional (i. 
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N oteon Wigner's Theorem on Symmetry Operations 
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Wigner's theorem states that a symmetry operation of a quantum system is induced by a unitary 
or an anti-unitary transformation. This note presents a detailed proof which closely follows Wigner's 
original exposition. 

INTRODUCTION 

T HE states of a quantum system 8 are described 
by unit vectors I (i.e., vectors of norm 1)1 in 

some Hilbert space x. Assume that, conversely, 
to every unit vector I in X corresponds a state of 8.2 

This correspondence is, of course, not one-to-one 
since I and 17 describe the same state if 7 is a scalar 
factor of modulus 1. The states of 8 are therefore 
in a one-one correspondence with unit rays f, a unit 
ray being defined as the set of all vectors of the form 
107, where 10 is a fixed unit vector in X and 7 any 
scalar of modulus 1. Any significant statement in 
quantum theory is therefore a statement about 
unit rays. 

Every vector I contained in the ray I (f E f) 
will be called a representative of f. The transition 
probability from a state f to a state g equals ICt, g)12 
where I, g are representatives of the rays f, g, 
respectively. This suggests the introduction of the 
inner product of two rays by the definition 

f·g = 1(/, g)1 (f E f, g E g), 

which is evidently independent of the choice of the 
representatives I, g. 

A symmetry operation T of the system 8 maps 
the states in X either onto themselves or onto the 
states in some other Hilbert space X', with preserva­
tion of transition probabilities. (The second alterna­
tive corresponds to the mapping of one coherent 
subspace onto another. See footnote 2.) In terms 
of rays, T defines a mapping, f' = Tf, of unit rays 
onto unit rays such that fi ·f~ = fl ·f2 if f~ = Tf j • 

It has been shown by Wigner3 that every such 
ray mapping T may be replaced by a vector mapping 
U of X onto X' which is either unitary or anti-

1 Here f corresponds of course to a wavefunction ,y. 
In this note vectors will be denoted by italics and scalars by 
lower-case Greek letters. The product of a vector f by the 
scalar A will be written fA. 

I If superselection rules hold for S, :IC will be considered 
a coherent subspace of the Hilbert space of all states. See the 
discussion in Wightman [A. S. Wightman, Nuovo Cimento 
SuppI. 14 (1959), p. 81]. 

a E. P. Wigner, Gruppentheorie (Frederick Vieweg und 
Sohn, Braunschweig, Germany, 1931), pp. 251-254; Group 
Theory (Academic Press Inc., New York, 1959), pp. 233-236. 

unitary.4 (For a precise formulation see Sec. 1.3 
below.) For a long time this theorem has played 
a fundamental role in the analysis of symmetry 
properties of quantum systems. 

The reason for returning to this question is the 
following. In Wigner's book the theorem is not 
proved in full detail. The construction of the mapping 
U, however, is clearly indicated, so that it is not 
difficult to close the gaps in the proof. In recent 
years several papers have appeared in which a proof 
of Wigner's theorem is presented.5

•
6 To this writer 

most of these proofs seem unsatisfactory in one 
significant aspect: They obscure the quite elementary 
nature of Wigner's theorem. 7 

In addition, some authors state-or imply-the 
view that it is desirable, if not necessary, to depart 
from Wigner's construction in order to arrive at a 
simple or rigorous demonstration of his theorem. 
This writer, on the contrary, has always felt that 
Wigner's construction provides an excellent basis 
for an elementary and straightforward proof. 

The present note is expository and contains no 
new results. It gives a complete proof of Wigner's 
theorem, by a method which closely adheres to his 
original construction. The only change of any con­
sequence is the following. While Wigner relates U 
to an orthonormal set defined once for all, the proof 
below uses orthonormal sets adjusted to the vectors 
under consideration. As a result, it suffices to employ 
sets of at most two or three vectors. 

Remarks on the notation. Re A and 1m A denote, 
respectively, the real and the imaginary part of the 
complex number A, and A * its complex conjugate. 

4 Although Wigner did not explicitly formulate his theorem 
in terms of rays, it is essentially equivalent to the one stated 
here and certainly follows from the theorem proved below. 

6 For a bibliography and a critical analysis of the proofs, see 
Uhlhorn, Ref. 6. The recent paper by Lomont and Mendelson 
[J. S. Lomont and P. Mendelson, Ann. Math. 78, 548 (1963).] 
should be added to his list. 

6 U. Uhlhorn, Arkiv Fysik 23, 307 (1963). 
7 This criticism does not apply at all to the very interesting 

papers by Emch and Piron [G. Emch and C. Piron, J. Math. 
Phys. 4, 469 (1963)] and by Uhlhorn6, who start from more 
general premises and, consequently, obtain more compre­
hensive results. 

862 
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1. STATEMENT OF THE THEOREM 

1.1. Preliminary remarks on rays. Let :Je be a 
complex Hilbert space-which may be finite dimen­
sional-with vectors j, g, .•.• The inner product 
(j, g) of two vectors j, g has Hermitian symmetry, 
i.e., (g, f) = (j, g)*, and for any complex scalar X 

(f, g'A) = (f, g)'A. (1) 

Ilfll = (f, f)~ is the norm of f· 
A ray f in :Je is the set of all vectors foT, where 

f 0 is a fixed vector in :Je and T any scalar of modulus 1. 8 

Every vector f E f is an element or a "representative" 
of f. Two vectors /" f" are equivalent if they belong 
to the same ray, which is the case if and only if 
f" = f'w (Iwl = 1). It is clear that a ray f is uniquely 
determined by anyone of its representatives f, and 
we write 

f = {tl. (1 a) 

° is the ray consisting of the vector O. 
The inner product of two rays f, g is defined by 

f·g = I(f, g)1 (f E f, g E g) (lb) 

and the norm of the ray f by 

If I = (f·f)' = Ilfll (f E f). (1 c) 

A unit ray is a ray of norm 1. 
For nonnegative real scalars p we define 

fp = {fp} (f E f), (2) 

i.e., if fo E f, the elements g of fp are given by 
g = foT (H = p). Clearly, 

(fp)u = f(pu), If pi = If I p, (2a) 

fp·gu = (f·g)pu. (2b) 

Every ray a may be expressed in the form 

a = ep (lei = 1, p ~ 0). (2 c) 

In all cases p = lal. If a = 0, then p = 0, and the 
unit ray e may be chosen arbitrarily. If a ¢ 0, 
e is uniquely determined as ap-l. 

1.2. It is reasonable to impose the following condi­
tions on a symmetry operation T. 

(a) T is defined for every unit ray e in :Je, and 
e' = Te is a unit ray in :Je'. 

(b) Tel ·Te2 = e,'e2 (preservation of transition 
probabilities) . 

(c) If Tel = Te2, then e1 = e2 (the mapping 
is one-to-one). 

8 Many authors define a ray differently, by including all 
multiples fo).. of a fixed vector fo (irrespective of 1)..1) in one 
ray-provided fo ,c 0 and ).. ,c Q--as is suggested by pro­
jective geometry. It Beems to the writer that in the present 
context the definition of the text is more convenient. 

(d) Every unit ray e' in :Je' is the image of some 
e in :Je (the mapping is onto the unit rays in :Je'). 

It is easily seen that (c) is superfluous, because 
it is an immediate consequence of (b). By Schwarz's 
inequality, two unit rays f, g coincide if and only if 
f·g = 1. Hence if Tel = Te2, then e1 = e2 by (b). 

In order to make the structure of the theorem 
more transparent we also drop the condition (d) 
and reinstate it in a corollary. 

1.3. Thus our aim is the proof of the following 

Main Theorem. Let e' = Te be a mapping of the 
unit rays e of a Hilbert space :Je into the unit rays 
e' of a Hilbert space :Je' which preserves inner prod­
ucts, i.e., such that 

(3) 

Then there exists a mapping a' = U a of all vectors 
a in :Je into the vectors a' in :Je' such that 

Ua ETa if a E a 

(if Ta is defined) and, in addition 

(a) U(a + b) = Ua + Ub,} 

(b) U(a'A) = (Ua)x('A) , 

(c) (Ua, Ub) = x«a, b», 

(4) 

(5) 

where either x('A) = 'A for all X or x('A) = 'A* for all 'A. 

A vector mapping U which satisfies (4) is called 
compatible with T. 

U is isometric since IIUal1 = Iiall by (5). It is 
a linear or an antilinear isometry according as 
x('A) = 'A or x('A) = 'A*. 

Corollary. If the T of the theorem is a mapping 
onto all unit rays in :Je'-in which case we call it 
a "ray correspondence"-U is a mapping onto :Je'. It 
is unitary if x('A) = X and anti-unitary if x(X) = X*.9 

The corollary is an immediate consequence of 
the theorem. 

1.4. The one-dimensional case is of course trivial. 
:Je contains only one unit ray e, and T is completely 
determined by Te = e'. Let e E e, and e' E e'. 
The two vector mappings UI (ea) = e' a and 
U 2 (ea) = e' a* are compatible with T. The first is 
linear, the second antilinear. 

Hereafter we assume JC to be at least two dimen­
sional. 

1.5. It is worth mentioning that, if dim JC ~ 2/° 
the linear or antilinear character of U may be 

• 9 By d~~nition,. a unitary. (anti-unitary) mapping is a 
lInear (antllmear) lBometry whlCh has an inverse. 

10 dim :Ie denotes the dimension of :Ie. 



                                                                                                                                    

864 V. BARGMANN 

expressed in terms of T. It describes, therefore, 
an intrinsic property of the mapping T and is 
independent of the choice of U. 

Consider three rays ai, and let af E ai' The 
expression 

.:i(al , a2 , aa) = (ai, a2)(a2 , aa)(aa, al) 

is independe:nt of the choice of the representatives 
ai and is therefore a function of the rays a;. In fact, 
if af are replaced by a: = aiT; (IT;1 = 1) the factors 
Tj cancel in .:i. It follows now from (5c) that 

.:i(Tel , Te2 , Tea) = x(.:i(el , e2 , ea». 
As it should be, this criterion is vacuous if dim X = 1 
because then e; = e, and .1 = 1. But if dim X ~ 2, 
.1 is not always real and may serve to distinguish 
linear from antilinear mappings. [Let e and f be 
two orthogonal unit vectors in X, and set el = e, 
e2 = 2- i (e - f), ea = 3-1(e + f(1 - i». Then 
IIeili = 1, .1 = i/6.] 

1.6. A vector mapping U which transforms equi­
valent vectors into equivalent vectors induces (i.e., 
is compatible with) a uniquely defined ray mapping 
T by the equation 

T{a} = {Ua} 

[see (la)]. It is clear that every (linear or antilinear) 
isometry-in view of (5b) and (5c)-induces a ray 
mapping T which preserves inner products. Wigner's 
theorem asserts that no other ray mappings of this 
kind exist. 

2. EXTENSION OF THE MAPPING T 

Before constructing U we extend, following 
Wigner, T from a mapping of unit rays to a mapping 
of all rays a in X into the rays a' in X' by defining 

T(ep) = (Te)p (p ~ 0, lei = 1). (6) 

Note that (6) defines Ta unambiguously for every 

(4) is the only condition imposed on U. [(5) results 
from the construction. J 

For later use we note the following. If, in the course 
of the construction, U has been defined [in accord­
ance with (4)] for all multiples aX of a vector a F 0, 
then by (7) 

IlVall = IIall, 
xa(1) = 1, 

U(aX) = (Ua)xa(X) , 

IXa(X)I = lXI, 
(8) 

(8a) 

where Xa(X) is a uniquely defined function of a and X. 
If U has been defined for a and b, 

I(Ua, Ub)1 = I(a, b)l. (8b) 

In Sec. 3 the mapping U is constructed for a 
subclass of all vectors. The partially defined U is 
analyzed in Sec. 4, and in Sec. 5 the construction 
of U-and the proof of the main theorem-is 
completed. 

3. PARTIAL CONSTRUCTION OF U 

3.1. Preliminary remarks. Let fp (p =: I, '" , m) 
be m orthonormal rays (m finite!) so that fpofv = 5m 

and set f~ = Tfp. If fp E fp and f~ E f~, then (fp, fv) = 
(f;, m = 5pv. Let a = Lp fpap, and a = fa}. For 
any a' ETa, 

(9) 
p 

Proof: Note that IIa'il = IIall, l(f~, a')1 = l(fp, a)l, 
and (fp, a) = ap. Therefore 

lIa' - L f~(f~, a')W = lIa'W - L l(f;, a')12 

p p 

= IIaW - L l(fp, a)1 2 = IIa - L fp(fp, a)W = 0, 
p p 

hence a' = ~p f~(f~, a'), and the assertion follows, 
with a; = U;, a'). 

3.2. Fix a unit ray e in X, and let e' = Te, so that 
le'l = 1. Select e E e, and e' E e'. We define 

Ue = e' ray a = ep. If a = 0, then p = 0, hence TO = O. A. 
If a ~ 0, both p and e are uniquely determined 

in accordance with (4).11 [see (2c)]. 
For the extended mapping we have 

(a) T(acr) = (Ta)cr 

(b) Tal
o Ta2 = a l ·a2, 

(cr ~ 0), } 

(c) ITal = lal· 
(7) 

[(a) If a = ep, both sides of (7a) equal (Te)pu. (b) 
Set ai = etPi' The assertion follows from (2b) and 
(3), and if a l = a 2 = a, we obtain (c).] 

In the sequel we deal throughout with the extended 
mapping T -which is assumed to be given-and 
construct U so as to be compatible with it. Equation 

Denote by <P the set of vectors in X orthogonal to 
e, by <p' the set of vectors in X' orthogonal to e'. 

Every vector a in X has a unique decomposition 

a=ea+z (z E <p); (10) 

viz., a = (e, a), z = a - e(e, a). In this section we 
construct U for those a for which a = 0 or 1. 

Let a = e + z (z E <P, z ~ 0), and set f = 411zll. 
U The selection of e' constitutes the only arbitrary choice 

in the construction of U. All other definitions are uuiquely 
determined by s'. 
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Let a, f, z be the corresponding rays, so that 

z = f Ilzll, If I = 1. 

If a' ETa, and f' E fl = Tf, then, by (9), a' = 
e'a~ + f'a~, la~1 = 1, la~1 = Ilzll.12 Hence Ta contains 
a uniquely determined vector a" (= a' a~-l) of the 
form e' + f'{3' (I{3'1 = IlziD. Setting f'{3' = Vz we 
definel3 

B. U(e + z) = e' + Vz (z E (P, Vz E (pI). 

Clearly, Vz = f'{3' E (Tf)lizll = Tz, and we are 
allowed to set 

C. Uz = Vz(= U(e + z) - Ue) (z E (p). 

If z = 0, we set V z = 0, so that B reduces to A. 
In the next section we analyze the mapping V 

of (P into (p' in greater detail. 

4. ANALYSIS OF THE MAPPING V 

4.1. The real part 01 (Vw, Vx). Let w, x be in (P. 

By C, B, and (8b), 

. I(Vw, Vx)1 2 = I(w, x)1 2
, (11) 

and I(e' + Vw, e' + Vx)1 2 
= I(e + w, e + x)1 2

, 

or 11 + (Vw, Vx)12 
= 11 + (w, x)1 2

• Since for every 
complex number r, 11 + rl 2 

= 1 + Irl
2 + 2 Re r, 

it follows from (11) that 

Re (Vw, Vx) = Re (w, x), (12) 

(Vw, Vx) = (w, x) if (w, x) is real. (12a) 

4.2. It will now be shown-in the remainder of 
this section-that, for any two nonvanishing y, z 
in (P, (a) V(y + z) = Vy + Vz, (b) x.(}..) = x.(}..) 
(see (8)], (c) (Vy, Vz) = xl(y, z». 

4.3 Set 11 = Y/llyli. If dim X = 2 all vectors 
in (P are multiples of 11, hence 

(13a) 

If dim X ~ 3 choose a second unit vector 12 in (P 

orthogonal to 11 (whether or not y and z are in­
dependent) such that 

(13b) 

In both cases let .£ be the set of linear combina­
tions of the m orthonormal vectorslp (m= 1 orm=2). 

4.4. The functions Xp(a). Set fp = {fp}. Then 
I~ = Vfp E Tfp, and the vectors f~ are orthonormal. 
By (8), 

IXp(a) I = lal· (14) 

12 e and I are orthonormal, so are e' and I'. 
11 The definitions A and B are the crucial steps in Wigner's 

construction. 

Applying (12) to fpa and fp{3 we obtain 

Re (xp(a)*Xp({3» = Re (a*{3). (15) 

Set a = 1. Since xp(l) = 1 we conclude from (12) 
and (12a) that 

Re xp({3) = Re (3, (15a) 

xp({3) = {3 for real (3. (15b) 

4.5.14 Let x = Lp Ipap. By (9), Va: = Lp f~a~, 
la~1 = lapl. We prove first that a~ = Xp(ap). This is 
trivial if a p = 0. If a p ¢ 0, set '¥ p = a:-l. Then 
(fp'¥p, fpap) = (fp'¥p, x) = 1. Hence, by (12a), 
xp(,¥p)*Xp(ap) = xp(,¥p)*a~ = 1, i.e., a~ = Xp(ap). 

We show next that X2(a) = Xl(a) if m = 2. 
Let w = Lp fp. Then Vw = Lp I~, and V(wa) = 
Lp f~Xp(a) = (Vw)x .. (a), by (8). Thus Xl(a) = 
X2(a) = x .. (a). As a result, 

VeL Ipap) = L f~Xl(ap). (16) 
p p 

4.6. Determination of Xl({3). (1) Set (3 = i. Then 
IX1(i)1 = 1, Re xl(i) = OJ thus xl(i) = 'l]i, 'I] = 1 
or 'I] = -1. (2) For any complex r, 1m r = Re (i*r) . 
Hence, from (15), 1m Xl({3) = Re (i*Xl({3) = 
'I] Re (xl(i)*Xl({3» = 'I] Re (i*{3) = 'I] 1m {3. Combining 
this with (15a), 

Xl ({3) = {3 if 'I] = 1, Xl ({3) = (3* if 'I] = -1. (17) 

Note the obvious relations: 

(a) Xl(a + (3) = Xl(a) + Xl({3), 

(b) Xl(a{3) = Xl(a)Xl({3), 

(c) Xl(a)* = Xl(a*). 

4.7. The structure 01 V. Let w = Lp fpap and 
x = Lp Ip{3p be two vectors in .£. From (16) and 
from the properties of Xl just stated we draw the 
following conclusions. By (a), V(w + x) = Vw + Vx, 
by (b), V (x}..) = (VX)Xl(}..). Since both y and z 
belong to .£ this proves the assertions (a) and (b) 
of Sec. 4.2, with x.(}..) = x.(}..) = Xl(}..)' To establish 
(c) in (4.2) we note that (y, z) = p*u [by (13)], and 
(Vy, Vz) = Xl(P)*Xl(U) = Xl(P*)Xl(U) = Xl(P*U), 

Q.E.D. 

By (b) in Sec. 4.2, x.(}..) is the aame function, 
say, X (}..) , for every nonvanishing vector z in (P. 

To sum up, the mapping V has the following 
properties: 

(a) V(y + z) = Vy + Vz, 

(b) V(ZA) = (VZ)X(A) , (18) 

(c) (Vy, Vz) = x«y, z», 

14 If m == 1, Sec. 4.5 may be omitted since Eq. (16) reduces 
then to Eq. (14). 
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where X is one of the functions in (17). [The equations 
(18) have been explicitly proved for nonvanishing 
y and z. But they hold trivially if y = 0 or z = 0.] 

S. THE CONSTRUCTION OF U COMPLETED 

It remains to define U for vectors a= ea+z (z E cp) 
for which a ~ 0, 1 [see (10)]. Set b = e + za-t, 
so that a = ba, and Ta = (Tb) lal if a, b are the 
corresponding rays. Ub (E Tb) is defined by B in 
Sec. 3. Hence (Ub)x(a) ETa, and we may therefore 
define Ua = (e' + V(za-l»x(a), or, by (18), 

D. U(ea + z) = e'x(a) + Vz (z E cp). 

If a = 1 or 0, D coincides with A, B, or C of Sec. 3. 
Thus it defines the mapping U for all vectors a in x. 

By virtue of (18) it is an immediate consequence 
of D that U satisfies all conditions (5) of the theorem. 

[For an example, let aj = eaj + Zj (j = 1, 2). 
Then (aI' a2) = a~a2 + (Zl' Z2), and (Ual' Ua2) = 
x(al)*x(a2) + Vz I, Vz2) = x(a~a2) + X«Zl, Z2» = 
x(a~a2 + (Zl' Z2» = x«al, a2»'] 

This concludes the proof of the main theorem. 

6. UNIQUENESS OF U 

It is of course important to know to what extent 
U is determined by a ray mapping T which preserves 
inner products. Without using the main theorem in 
this section the following can be asserted. (T stands 
for the extended mapping) 

(a) Let U be a vector mapping compatible with T. 
If aI, a2 are (linearly) independent, so are Ua1, Ua2' 
Proof: Two vectors aj are independent if and only if 
G(al' a2) = (aI' al)(a2, a2) - I(al, a2W > O. Since, 
by (8b), G is not changed by the mapping U, the 
assertion follows. 

(b) If U2 and UI are compatible with the same T, 
then U20 = UIO = 0, and for every a ~ 0 

Ir(a)1 = 1. 

If r(a) = 0 (independent of a), we write U2 = UIO. 
A mapping U is additive if U(a + b) = Ua + Ub. 

Theorem 2. If two additive vector mappings U2 and 
U I are compatible with the same T, and dim X ~ 2, 
then U2 = UIO. 15 (101 = 1.) 

Proof: We proceed in two steps. (1) If a, bare 
independent, r(a) = reb). Set c = a + b. Then 
U2c = U2a + U2b, Ulc = U1a + Ulb, and U2c = 
(Ulc)r(c). Therefore 

(U1a)r(a) + (U1b)r(b) = (U1a + U1b)r(c). 
16 In terms of the construction in Sec. 3.2 this merely 

means that A is replaced by Ute = e' fJ (see footnote 11). 
It follows from Sec. 1.4 that dim X ~ 2 is a necessary 
assumption. 

Since Ula and U1b are independent, r(c) =r(a) =r(b). 
(2) Fix a vector ao ~ 0 in X, and set r(ao) = O. 

For every vector a ~ 0, r(a) = O. If a and ao are 
independent, this follows from (1). If a= aop. (p. ~ 0), 
choose b independent of ao (and hence of a). Then, 
by (1), reb) = r(a), reb) = 0, Q.E.D. 

Let U2 = U10. If Ul(aA) = (U1a)x(A), then 
also U2(aA) = (U2a)x(A). In fact, 

U2(aA) = (Ula)x(A)O = (Ula)Ox(A) = (U2a)x(>') (19) 

in accordance with our result in Sec. 1.5. 

APPENDIX. WIGNER'S THEOREM IN QUATERNION 
QUANTUM THEORY 

In recent years there has been some interest in 
a modification of the quantum theoretical formalism 
which consists in replacing the complex Hilbert space 
of quantum states by a quaternion Hilbert space. 16 

We wish to indicate the changes in the theorem 
and in its proof that must be made. The above 
exposition is so arranged that these changes are 
concentrated in a few places. 

1. Preliminary remarks on quaternions. 17 Let Q be 
the set of all quaternions. We write a quaternion A 
in the form A = .L:~-o A.i •. Here, A. are real numbers, 
io = 1 (i.e., ioA = Aio = A for every A E Q), while 
ir (r = 1, 2, 3) are the imaginary units, with the 
multiplication rules 

i~ = -1, iri. = -i.ir = it (AI) 

where r, s, t is an even permutation of 1, 2, 3. 
The conjugate A * of A is defined by 

3 

A* = Aoio - .L: Arir 

so that (A *) * = A. A quaternion is real if A * = A, 
i.e., A = Ao·l = Ao. (The real quaternions, and only 
they, commute with all of Q.) In general we denote 
the real part of A by 

Re A = !(A + A*) = Ao 

Note that Re A * = Re A. Let K = .L:. K.i •. Since 
(i"i.)* = i~i~ (for all p., v), (KA)* = A*K*. 

For all p., v 

Re (i~i.) = Re (i"i~) = ~w (A2) 

It follows that 

Re (K*>') = Re (A*K) = L K.'A., (A2a) . 
Re (K*'A) = Re (KA*). (A2b) 

16 D. Finkelstein, J. M. Jauch, S. Schiminovich, and 
D. Speiser, J. Math. Phys. 3, 207 (1961). 

17 The reader is assumed to be familiar with quaternions. 
These introductory remarks fix the notation and review 
several relations to be used later on. 
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In particular, AA * and A *A being real, 

XX* = X*X = L: X; = Ix12, . 
where IXI is the modulus of X. We have IKXI = IKIIXI 
since IKxI 2 = K(AX*)K* = (KK*) (XX*) = !K!2 Ix12. 
If X ~ 0, X-I = !X/-2X*, AX-I = X-IX = 1. 

Q may be considered a four-dimensional real vector 
space. (A2a) defines then an inner product in Q, 
and by (A2) the units i. form an orthonormal basis. 
Hence 

X, = Re (i~X). (A3) 

More generally, let i. (v = 0, 1, 2, 3) be four orth­
onormal quaternions, so that Re Citi.) = 0,. •. Then 
every K may be written as 

K = L: Re (j~K)i.· (A3a) , 

For a later application we add a few words about 
the automorphism 

X' = CT,/X) = 'YX'Y-I = 'YX'Y* (A4) 

where "I is a fixed quaternion of modulus 1. Clearly 

(a) CT,y(K + X) = CT'Y(K) + CT'Y(X), 

(b) CT'Y(KX) = CT'Y(K)CT'Y(X), 

(c) CT'Y(X*) = CT'Y(X)*, 

In addition, 

(d) Re CT 'Y(X) = Re X, 

(e) Re (CT 'Y(K)*CT 'Y(X» = Re (K*X). 

[(d) follows from Re «'YXh*) = Re ('Y*'YA) = Re X, 
and this in turn implies (e) because CT'Y(K)*CT'Y(X) = 
CT'Y(K*A).] By (e), CT'Y is an orthogonal transforma­
tion on Q. Conjugation is also an orthogonal mapp­
ing, by (A2a). Combining it with CT'Y one obtains 
a second type of orthogonal transformation, 

X' = CT'Y(X*), (A4a) 

2. Wigner's theorem. The states of the system S 
are again put in a one-one correspondence with the 
unit rays in the Hilbert space Je. The discussion 
in Sec. 1.1 remains unchanged except that the 
scalars X and the values of the inner products 
(f, g)-in Je and Je'-are now quaternions. More 
generally, the whole content of Secs. 1-6 remains 
applicable with the exception of those instances 
where (a) specific properties of complex numbers 
are used or (b) the commutative law of multiplica­
tion is applied. 

The only instance of type (a) is the determination 
of XI in Sec. 4.6 and, consequently, the charac-

terization of x(X) in the statement of the main 
theorem. The only instance of Type (b) is Eq. (19) 
in Sec. 6. 18 

These two points are now re-examined. 
3. The two-dimensional case. In the quaternion case 

Wigner's theorem no longer holds if dim Je = 2.19 
Every vector z in (p has now the form fla, and 

V(fla) = f{XI(a) [see (14)] where XI satisfies the 
three equations (15), (15a), and (15b). From (A4) 
and (A4a) we obtain two types of solutions, viz., 

(1) XI(a) = CT'Y(a), (2) XI(a) = CT'Y(a*). (A5) 

(It is not difficult to show that no other solutions 
exist.) 

N ow the proof of the main theorem in Sec. 5 
is based, in part, on Eq. (I8b), whose derivation 
in turn depends on the relation (b) at the end of 
Sec. 4.6, namely, XI(a{3) = XI(a)xI(j3). While the 
first solution in (A5) satisfies this relation we find 
for the second XI(aj3) = CT'Y«a{3)*) = CT'Y({3*a*) = 
CT'Y({3*)O''Y(a*) = Xl({3)xl(a). The order of the factors 
is reversed: XI is an antiautomorphism. 

Choose, for simplicity, "I = 1, so that V(fI{3) = 
f{{3*. As the arguments of Sec. 5 show we may set 
U(ea + fl(3) = (e' + i{({3a-I)*)a if a ~ O. For 
convenience we define a new mapping Uo compatible 
with T by 

Uo(ea + tl(3) = (e' + t~({3a -I)*)a (a ~ 0), 

Uo(ftfj) = t~{3 (a = 0). 

(U 0 differs from U only if a = 0.) 
To disprove Wigner's theorem in this case it 

remains to show (1) that Uo actually induces a 
ray mapping T with the required properties [Le., 
that no conditions have been overlooked that might 
rule out the second solution in (A5)]; (2) that no 
additive vector mapping is compatible with T. 

(1) By straightforward computation one verifies 
that, for every vector a = ea + tl{3, Uo(aX) = (Uoa)X, 
and that !(Uoal, UOa2)! = !(al, a2)!' Thus Uo induces 
indeed a ray mapping T which preserves inner 
products. 

(2) will be proved by contradiction. Let W be 
an additive vector mapping compatible with T. Then 

W(ccx + 11(3) = (Uo(ea + fl(3»rJ.>(a, (3) !rJ.>(a, ,8)1 = 1 

if (a, (3) ~ (0,0). In particular, W(ea) = e'arJ.>(a, 0), 
W(fl{3) = f~{3rJ.>(O, (3). Setting 17(a) = a rJ.> (a, 0) and 

18 It should be added that the remarks in Sec. 1.5 do not 
apply to the quate!nion case. The proof. that ~ does not 
depend on the chOIce of the representatlves aj uses com-
mutativity of multiplication. . 

19 Uhlhorn's contrary assertion (Ref. ?, pp. 335, 336) 18 
inoorrect. He overlooked the second solutlOn In (A5). 
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r(fJ) = /34.>(0, (3) we conclude from the additivity of 
Wthat 

e'1/(OI) + f~t(fJ) = (e' + f{OI*-l/3*)a4.>(OI, (3). 

Assume 01 ¢ 0, /3 ¢ O. Then '1, t and 4.> ¢ 0, and 

OI*t(fJ) = /3*1/(01). (A6) 

Setting, in succession, 01 = /3 = I, /3 = I, and 
01 = I, one finds t(l) = 1/(1), 1/(01) = 01*'1(1), 
r(/3) = /3*1/(1). Multiplying (A6) with '1(1)-1 from 
the right, we finally obtain 01*/3* = /3*01* or /301 = 01/3, 
which is absurd. 

4. Determination of Xl if dim JC ~ 3. Here m = 2, 
and we first derive a further condition on Xl to 
supplement Eqs. (15), (15a), (15b). Letw = fl + f201. 
Then Vw = f{ + f~xl(OI), and V(w/3) = f~xl(/3) + 
f~xl(OIf3) = (Vw)x .. (/3), so that Xl (/3) x .. (f3), 
Xl(OI/3) = Xl(OI)x .. (f3). Thus 

(A7) 

Set now i. = Xl(i.). By (15b), io = I, and by (15) 
and (A2) 

R (j*.) - R ('*') - ~ e /.3. - e ~I'~' - UI'" 

Let/3= E:-o/3.i •• By (15), Re (j~Xl(/3» =Re (i~f3) =/3. 
[see (A3)], so that, by (A3a) 

Xl(f3) = E /3.i.· (A8) 
• 

By (15b),xl(-1) = -l;henceby (A7), Xl(-/3) = 
-Xl(/3). Applying (A7) to i, (r > 0) we find 

1~ = xl(i~) = -I, 
M. = xl(i,i.) = xl(i,) = i" 
i.i, = xl(-i,) = -i" 

if (r, s, t) is an even permutation of (I, 2, 3). Together 
with io = I, this shows that the i. satisfy the 
multiplication rules of the units i •. 

It is well known-and easily proved-that then 
i. = 'Yi.'Y-l = (I'.,(i.) for some fixed 'Y of modulus 1. 
Inserting this in (A8) we finally obtain 

Xl(fJ) = (I' .,(fJ). (A9) 

Thls solution satisfies all three relations listed at 
the end of Sec. 4.6, and the arguments in Sec. 4.7 
and Sec. 5 apply without change. Thus the main 
theorem is valid, but x(X) is an automorphism (1'., (X), 
and U a semilinear isometry. 

5. Theorem 2 of Sec. 6 holds. The transition from 
U1 to U2 = U1(J, however, has now more radical 
consequences. Instead of Eq. (19) we have 

U,(aX) = Ul(a)x(X)(J = (Ula)(J«(J-lx(X)(J). 

Assuming x(X) = (1'., (X), 

U2(aX) = (U2a)x'(X), 
(A10) 

X'(X) = (J-l(l'.,(X)(J = (l'9-1.,(X). 

x'(X) = x(X) if and only if U2 = ±Ul. In fact, 
(J must commute with all (I'.,(X) and hence must 
be real. Since I(JI = I, (J = ±1. 

In particular, if (J = 'Y, then x' (X) = X, so that 
U2 is linear. 

To sum up: In the quaternion case, if dim JC ~ 3, 
every ray mapping T which preserves inner products 
is induced by a linear mapping U, and T determines 
U up to a sign. 

6. Remarks on Uhlhorn's theorem. The following 
remarks apply to the complex as well as the quater­
nion case. Uhlhorn has obtained the very interesting 
result that Wigner's theorem holds under consider­
ably weaker assumptions. In terms of the conditions 
listed in Sec. 1.2 it suffices to maintain (a) and (d) 
while (b) is replaced by the condition b' : Tel' Te2 = 0 
if and only if el ' e2 = 0 (preservation only of the 
transition probability zero!) On the other hand it 
is necessary to assume dim JC ~ 3. 

Since, however, the condition (d)-or possibly 
some weaker substitute-is actually needed for the 
proof of Uhlhorn's result it seems to the writer that 
the main theorem proved in the present note retains 
an independent mathematical interest. 

In conclusion it may be mentioned that a minor 
modification of Wigner's construction also yields a 
simple proof of Uhlhorn's theorem. 
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Zero-Mass Representations of the Proper Inhomogeneous Lorentz Group* 
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The representations of the proper inhomogeneous Lorentz group are investigated as a function 
of both real and imaginary mass, in the limit as the mass approaches zero. One obtains only the 
physical mass-zero representations in either limit, the infinite spin representations being unique to 
zero mass. It is found that there exists a superselection rule which prohibits the position and spin 
operators from being physically observable in the mass-zero limit. 

1. INTRODUCTION 

THE classification of the unitary irreducible repre­
sentations of the proper inhomogeneous Lorentz 

group usually differentiates between three distinct 
classes. I-a These classes, corresponding to a particle 
with a squared mass greater than, less than, or 
equal to zero, are qualitatively very different. How­
ever, one might expect on physical grounds that a 
particle of vanishingly small mass, or vanishingly 
small imaginary mass, should behave like, and be 
indistinguishable from, a zero-mass particle. The 
"physical" mass-zero representations (i.e., non­
infinite spin) have been obtained by Coester6 as 
a limit of those representations characterized by 
a finite (real) mass. The purposes of this paper are 
twofold: First, to expand on Coester's results for 
the zero-mass limit, with particular attention to the 
role of the position and spin operators. Second, to 
obtain the "physical" zero-mass representations as 
a limit of those characterized by a finite imaginary 
mass (i.e., negative squared mass). We set h = c = 1 
throughout. 

2. THE REPRESENTATIONS OF THE PROPER 
INHOMOGENEOUS LORENTZ GROup7 

As is well known, the generators of the proper 
inhomogeneous Lorentz group are ten in number 
corresponding to the linear four-momentum (transla-

* This research was supported by the National Science 
Foundation under Grant GP 1193. 

1 E. P. Wigner, Ann. Math. 40, 149 (1939). 
I V. Bargmann and E. P. Wigner, Proc. Nat!. Acad. Sci. 

U. S. 34, 211 (1948). 
a Yu. M. Shirokhov, Zh. Eksperim. i Teor. Fiz. 33, 861 

(1957) [English trans!.: Soviet Phys.-JETP 6, 664 (1958)]. 
'Yu. M. Shirokhov, Zh. Eksperim. i Teor. Fiz. 33, 1196 

(1957) [English trans!': Soviet Phys.-JETP 6, 919 (1958)]. 
6 Yu. M. Shirokhov, Zh. Eksperim. i Teor. Fiz. 33, 1208 

(1957) [English trans!.: Soviet Phys.-JETP 6, 929 (1958)]. 
B F. Coester, Phys. Rev. 129,2816 (1963). 
7 Sections 2 and 3 are a summary of well known results, 

which we have included for purposes of self-containment. 
Section 2 leans heavily on Ref. 4. The results of Sec. 3 have 
previously been derived by Coester (Ref. 6). Our trans­
formation matrix (3.1) differs from his by a similarity 
transformation. 

tions) and the four-angular momentum (rotations 
and pure Lorentz transformations). These satisfy 
the commutation rules 

It is convenient to define the pseudovector 
w" = !e ... p"M'pp" which is orthogonal to PI" p"w" = 0, 
and which has the following commutation rules with 
the generators: 

[M "., wp] = i(g.pw" - g"pw.); [WI" P.] = 0; 

(2.2) 

It then follows that p"p" == P and w"w" == - W 
commute with the ten generators and hence, via 
Schur's Lemma, are multiples of the identity matrix 
in any irreducible representation. The eigenvalue of 
P is the mass squared and the eigenvalue of P-1W 
is related to the spin, s, by P-1W = S (s + 1). In 
addition, there may be other invariants for particular 
classes of representations. The irreducible unitary 
representations of the proper inhomogeneous Lorentz 
group may be classified as follows: 

(A) P > O. The relation p,.w" = 0 requires that 
W > O. It follows from the commutation rules 
that the spin is an integer (half-integer) for single 
(double)-valued representations. In addition, Po/IPol, 
the sign of the energy, commutes with the ten 
generators and hence there are two irreducible rep­
resentations for each value of P and W -one for 
each sign of the energy. A basis which spans the 
representation space may be taken to be the eigen­
states of the four-momentum and helicity (wo/lpl). 
The spectrum is given by (2s + 1) eigenstates of 
helicity for each value of the four-momentum, going 

869 
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from -8 to +8 in integer steps. An explicit rep­
resentation of the generators for, e.g., Po > 0, in 
which the z component of spin is diagonal, rather 
than the helicity, has been given by Shirokhov4

: 

(P)OI> = p, (Po)OI> = (P2 + m2)1, (2.3) 

M = -i(p xV,,) + S, 

N = ipoV" - S x pi (Po + m), 

M == (M2a , Mal, M 12), N == (Mol, M02 ' Moa). 

8 = (81, 8 2, 8 a) denote a set of constant (Le., 
momentum-independent), (28 + 1) X (28 + 1)­
dimensional matrices, satisfying [8;, 8 j ] = Eijk8k • 

The usual convention, which we shall adopt, is to 
take 8a diagonal. The unitary irreducible representa­
tions of Class A are denoted in the literature by 
P:m, the sign referring to the sign of the en~rgy. 
We shall have occasion to deal only with umtary 
representations in this paper. The wavefunctions 
which constitute a representation space for P: m 

have (28 + 1) components. 
(B) P = O. The relation ppwP = 0 requires that 

either W > 0 or else Wp = CPM where C is a constant. 
The spin is undefined in both cases. Both Pol/Po/ 
and wol/p/ commute with the ten generators if 
W =0. If W > 0, we have the "infinite spin:' rep; 
resentations considered by Bargmann and Wlgner. 
We are not interested in these representations for 
reasons which are made clearer below (Sec. 5). 
For W = 0, the irreducible representations contain 
the helicity as a diagonal operator and the wave­
functions are all one component. The helicity op­
erator has eigenvalues ~ = wol/p/ = ±wolpo, 
where ~ is an integer (half-integer) for single 
(double)-valued representations. An explicit rep­
resentation of the generators for, e.g., Po > 0 and 
wof/p/ = ~ has been given by Shirokhov5

•
g

•
9

: 

MI = -i(p XV,,)l 

+ [~Pl /p/I(P~ + p;)](l - Pal/p/), 

M2 = -i(p X V1')2 

+ [~P2 /p/I(P~ + p;)](l - Pal/p/), 

Ma = -i(p xV1')a + ~, 
Nl = ipoafapl + [PoP21(P~ + p;)](l - Pal/P/)~, 

N2 = ipoalap2 - [PoPll(P~ + p;)](l - P31/p/)~, 

Na = ipoalapa. 

(2.4) 

8 Strictly speaking, the repr~sentation (2.4) ~i~ers from 
Shirokhov's by a unitary eqUlvalence. In additIon, some 
errors of sign in Ref. 5 have been corrected. 

9 Yu. M. Shirokhov, Nucl. Phys. 15, 1 (1960). 

The Class B representations are denoted in the 
literature by P!o. Once again, the sign refers to the 
sign of the energy. 

(C) P < O. The relation ppwP = 0 impose.s no 
restriction on W. If p-IW ~ O( -i) for smgle 
(double)-valued representations, then wol/wo/, the 
sign of the helicity, commutes with the ten genera~ors 
and is a multiple of the identity in an irreduCIble 
representation. In this case p-IW = 8(8 + 1) where 
8 is an integer (half-integer) greater than, or equal to, 
zero (minus one-half) for single (double)-valued 
representations. Depending on the sign of the 
helicity in the irreducible representation, the helicity 
runs from ± (8 + 1) to ± CD in integer steps. 
We may therefore say, after a fashion, that the 
magnitude of the helicity exceed8 that of the spin 
for Class C representations. "Spin" is perhaps a 
misleading term, since p-lW does not have the 
physical significance in this case of being the angular 
momentum in the rest frame of the particle. Indeed, 
a Class C "particle" has no rest frame. 10.11 If 
p-lW < O( -i) there are no supplementary in­
variants. The spectrum of p-lW is continuous in 
this case, and the spectrum of helicity, for any 
value of the four-momentum, encompasses all 
integers (half-integers) for single (double)-valued 
representations. An explicit representation of the 
generators for Class C representations has been 
given by Shirokhov.4 Inasmuch as the sign of the 
energy is no longer an invariant, the energy is a 
two-valued function of the three-momentum within 
the representation. To get around this one resorts 
to four-dimensional angle variables: 

po = IT sinh X, PI = IT cosh X sin 0 cos cp, 

P2 = IT cosh X sin Osincp, Pa = IT cosh X cos 0, (2.5) 

- CD < X < CD, 0 ~ 0 ~ 7r, -7r ~ cp ~ 7r. 

IT2 = -PPP~ == _m2 > O. 

In terms of these variables the representation is 
given by 

.. a +. to a (M)I = M 2a = ~ sm cp - ~ co cos CP-a ao cp 

Tlsinhx + To cosh x sin 0 cOScp (2.6) 
+ 1+ cosh x cos 0 

a. . a 
Mal = -i coscp ao + ~ cot Osmcp acp 

--lo-D-.-K-orff, Ph.D. Thesis, Brandeis University (1962) 
(to be published). 

11 O. M. P. Bilaniuk, V. K. Deshpande, and E. C. G. 
Sudarshan, Am. J. Phys. 30, 718 (1962). 



                                                                                                                                    

REP RES E N TAT ION S 0 FIN HOM 0 G ENE 0 U S LOR E N T Z G R 0 U P 871 

+ T2 sinh X + To cosh x sin 0 sin cp 
l+coshxcos O ' 

M12 = -iajacp + To, 

(N) M ., a +. nh 
1 = 01 = 'l, sm 0 cos cp ax 'l, ta x 

a. sin cp a 
x cos () ao - 'l,tanhxsin 0 acp - T2, 

M 02 = i sin 0 sin cp :x + i tanh X cos (} 

. a+. nh coscpa+ T X smcp ae 'l,ta xsin (} acp 1, 

M · a· nh · a 
03 = 1, cos (} ax - tta X sm 0 ao 

+ cosh X sin O(T2 cos cp - Tl sin cp) . 
1 + cosh x cos () 

To, T1, and T2 constitute a representation of the 
following commutation rules: 

[To, T1] = iT2' [T2' To] = iTt, [Tt, T2] = -iTo. 
(2.7) 

It has been shown by Bargmann that there are no 
finite-dimensional unitary representations of these 
commutation rules. 12 

An explicit representation of (2.7) with To diagonal 
has the following form for those representations 
corresponding to p- 1W < O( -i): 

(To)", .. = nOm .. , 

(T1 + iT2)".n == (T +)",n = a"om.n+t; 

(T t - iT2)". .. == (T-)m .. = b"o"'+l ... , 

a"b" = _(P-1W) + n(n + 1); 

- 00 < n, m < 00. (2.8) 

For P- 1W = 8 (8 + 1) ~ O( -i), Inl ~ 8 + 1 is 
a requirement that the representation be unitary 
so that b, = a_a = 0 and n is restricted by the 
inequalities - 00 < n :::; - (8 + 1) and 00 > n 2: 
(8 + 1). In this latter case, as we have remarked, 
the sign of the helicity, which does not selectively 
favor the z direction in any way, is an invariant. 
Strictly speaking, then, the above representation 
is not irreducible but can be reduced to the direct 
sum of irreducible representations. To obtain the 
irreducible representations, one must transform to 
a helicity diagonal representation. We return to this 
point below (Sec. 5). 

12 V. Bargmann, Ann. Math. 48,568 (1947). 

The representations of Class C corresponding to 
p-tW < 0(-1) are denoted by p~, a referring to 
the eigenvalue of P-1W. For p-IW ~ 0(-1), the 
conventional notation is p~l, l denoting the spin, 
and the sign referring to the sign of the helicity. 
The representations given by (2.6) are now reducible. 
We show that there exists a unitary transformation 
which transforms (2.6) into the direct sum p~ I E8 Pil I. 

Finally, there is a scalar representation, p~, cor­
responding to To = TI = T2 = O. 

3. THE ZERO-MASS LIMIT FROM ABOVE 

Since the zero-mass irreducible representations 
are of necessity diagonal in the helicity, it is con­
venient to investigate the limit by transforming the 
finite-mass representations to a helicity diagonal 
form. The transforming operator is that of a rotation 
in spin space from the z axis to the p axis. The 
angles involved are momentum-dependent and hence 
radically affect the explicit form of the generators. 
For reasons of convenience we choose 

(3.1) 

o = tan- I (P-P+)!/P3, cp = tan- I (PI/P2)' 

In (3.1), p,j, == PI ± ip2, and SI' S3 are (2l + 1)­
dimensional spin matrices. With this transformation 
our new operators 0' = U 0 U-t, are 

M{ = -i(p x Vp)t + S3(Pt Ipl/p-p+)(1 - Pa/lpi), 

M~ = -i(P XVp)1 + S3(P2 Ipl/p-p+)(1 - Pa/lpi), 

M~ = -i(p xVp)a + Sa, (3.2) 

A few pedagogical remarks might be in order here. 
There are singularities in the operators M and N 
for PI = P2 = O. These are not physical, however, 
as can be seen by transforming to four-dimensional 
angle variables: 

Po = m cosh X, PI = m sinh X sin 0 cos Cp, (3.3) 
P2 = msinhx sin (}sincp, Pa = m sinh x cos 8. 
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The singularities are all of the form (sin 0)-\ and 
are exactly canceled in all matrix elements via the 
factor d3p = p2 sin 0 dO dcp = m2 sinh2 x sin 0 dO dcp. 
Secondly, the form of the operators favors the direc­
tion of the z axis. This is, however, compensated 
by a corresponding imbalance in the wavefunction. 
As an illustration, consider an eigenstate of helicity 
and spin with eigenvalues t, !. 

,,-'&... 
Pot = Ipl' 

(3.4) 

If we define 0 and cp by Eq. (3.1), then we have 
:1)1 (- cp, 0, cp)8(p) = [1 011ft(lpI2

), which is a spher­
ically symmetric wavefunction. However, 8(p) 
is certainly not spherically symmetric and V p op­
erates on the functions of p inside the brackets as 
well as on 1ft(lpI2). To compensate, in the helicity 
diagonal representation, where these functions are 
p-independent (namely, the constants one and zero), 
the operators must be asymmetric in form. 

Bya comparison of (2.4) and (3.2), it is clear that 

lim P:". = p:~ EB P:~'-ll EB ... EB P:o• (3.5) 

Two results may be immediately drawn: 

(a) Particles with "small" mass behave like 
particles with zero mass. By "small" mass we mean 
that the momentum-space wavefunction of the 
particles differs appreciably from zero only for 
m/ipi « 1. 

(b) Particles with the same helicity and different 
spin behave alike in the limit of "small" mass. 

4. THE SPIN AND POSITION OPERATORS 
FOR A MASS-ZERO PARTICLE 

There are other results which follow from (3.2). 
Consider two particles with identical four-momenta 
and helicity but different spins. These two states 
will be distinguishable in the case of nonzero mass. 
In the limit, however, one has 

lim [(a I 0 la) - (bl 0 Ib)] = 0, (4.1) 
".-0 

where la) and Ib) are the states referred to, and 
o is any of the ten generators of the Lorentz group. 
Equation (4.1) holds for any operator made up of 
sums of products of the generators with coefficients 
which remain finite in the zero-mass limit (i.e., 
which are not proportional to inverse powers of 
the mass). Let us call such operators "proper" 
operators. All other operators we refer to as "im-

proper." An interesting example of an improper 
operator is the spin operator p-1W = - (m)-2wl'wl'. 
If proper operators are the only physically measur­
able operators in the limit, then one may say that 
la) and Ib) become indistinguishable. This follows 
from the fact that all proper operators may be 
written in the form Mp)I + Mp)S3 where I is the 
identity matrix. Information concerning the spin 
resides in those terms involving S+ and S_. These, 
however, vanish from proper operators in the limit. 
Thus, for example, a photon need not be considered 
as the unique limit of a neutral vector meson but 
may, with equal validity, be looked on as the 
mass-zero limit of a spin-two, helicity-one state-or, 
for that matter, spin-n, helicity-one. Strictly speak­
ing, the terms dependent on spin (i.e., proportional 
to S+ or K) go to zero as m/ipi rather than m, 
so that we may roughly say that if m < l/a, where 
a is the order of the dimensions of the measuring 
apparatus, then those momentum states for which 
the states la) and Ib) are resolvable, are undetectable. 
Hence we may write 

[(a I 0 la) - (bl 0 Ib)] = O(am), m« l/a, (4.1a) 

where 0 is a proper operator. We show below that 
although improper operators may be well defined in 
the mass-zero limit, they are nonphysical. By this 
we mean that their measurement cannot be exper­
imentally performed. We see that the mathematical 
form of this statement is the existence, in the limit, 
of a superselection rule which prohibits improper 
operators from being physical observables. As a 
convenient example of an improper operator, we 
first consider the spin. 

It is commonly assumed that a photon is a 
spin-one particle. That is, the mass-zero limit of a 
neutral vector meson with a supplementary condi­
tion attached ruling out the longitudinal, helicity­
zero eigenstate. Suppose, for the sake of argument, 
one proposed the "ridiculous" assertion that the 
photon had spin two. If the photon had a finite 
mass, then a measurement of spin could be made by 
viewing the particle in different Lorentz frames and 
counting the number of helicity states. Let us 
assign the photon a finite, though vanishingly small, 
mass and investigate this experiment in the mass 
zero limit. For purposes of calculational ease, con­
sider the decay 'lr

0 ~ 2'1'. We denote the photon's 
mass by m'Y' Then if m'Y ~ 0, the statement that 
the photon has helicity one is no longer a Lorentz­
invariant one. One may, however, make this state­
ment in a particular preferred Lorentz frame, which 
we take as the rest frame of the decaying 'lr

0
• Taking 
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the momentum direction of the emergent photons 
as our z axis, we ask the following question: How 
fast must an observer be moving in the direction 
of the x axis in order to detect a component ~ of 
helicity two (i.e., relative probability ~2 that the 
photon be in a helicity-two state)? ~ is presumed 
to be an experimental parameter determined by the 
resolvability of the detecting apparatus. 

This calculation may be performed (Appendix A) 
to yield the result 

v = tanh (m .. ~/2m'l')' (4.2) 

where m .. is the mass of the 'lr
0 meson. 

Clearly, if m"( « m .. ~, then v ~ 1. Equivalently, 
we may interpret (4.2) as the velocity the 'lr

0 must 
have relative to the laboratory frame before a 
detectable helicity-two component is observed. If 
Emu is the greatest energy which a 'lr

0 beam can be 
experimentally given, then if 

(4.3) 

no helicity-two component will ever be observed. 
Note that in order to get a detectable matrix element 
one needs u = sinh-1 [vl(1 - v2)i] '""-/ p'l~/m"(. This 
is what one might expect inasmuch as the raising 
and lowering parts of N [i.e., those terms proportional 
to 8+ (= 8 1 + i82 ) and K (=: 8 1 - i82)] go to zero 
as milpl. 

As a possible experimental consequence of the 
above discussion we note that if one extends a 
massless, helicity q, particle off the light cone by 
giving it a small mass, then this extension is not 
unique, since the spin is unspecified and need not 
equal q. In particular, if one wishes to speculate 
about the physical consequences of assigning a finite 
mass to the muon's neutrino, then one may take 
into account the possibility of a spin different than 
one-half. 

As we have noted, any proper operator will, in 
the limit of mass zero, have no matrix elements 
connecting states of different helicity and identical 
spin. Due to finite resolvability parameters of any 
measuring apparatus, this condition obtains at a 
finite, though infinitesimal, value of the mass, which 
is determined by the experimental parameters. 

If proper operators are the only physically mean­
ingful operators in the limit, then each eigenstate 
of helicity, together with the four-momentum con­
tinuum, spans a Hilbert space. That improper op­
erators have no physical significance in the mass-zero 
limit can be seen from the following argument: The 
four components of the four-momentum, together 
with Wo and w~wJl, constitute a complete commuting 

set of observables. Any two states which have the 
same eigenvalues of all the above operators must 
be physically identical, else we would not have a 
complete set. In the limit, w~wJl, being essentially 
the spin times the mass, approaches zero, and informa­
tion concerning the spin becomes increasingly dif­
ficult to obtain in the sense described above. Any 
operator which differentiates between two states 
with identical eigenvalues of a complete set must 
be nonphysical. Improper operators are exactly 8UCh 
operators. Another way of looking at this is the 
following: P and W represent only two invariants 
of the Lorentz group. Allowing the spin a physical 
interpretation yields three invariants; namely P 
(equal to zero), W (equal to zero), and P-1W 
[equal to S(8 + 1)]. 

Alternatively, the above discussion can be given 
the form of a superselection rule. Consider two states 
of a spin-s particle with finite mass 

11) = la) + Ib), 12) = la) + eiB Ib), (4.4) 

where a and b are states of different helicity. States 
1 and 2 are resolvable since the representations (3.2) 
contain raising and lowering operators which will 
take into account the value of the phase factor. 
In the limit, however, these terms vanish [cf. (3.2)], 
and no measurement may distinguish tlie two states. 
In this case we say that the Hilbert spaces consisting 
of different helicity states (plus the four-momentum 
manifold) are incoherent. Any operator which has 
matrix elements between these incoherent Hilbert 
spaces is unphysical. One says that a superselection 
rule operates against it. The existence of this super­
selection rule corresponds to an operator, the 
heIicity, which commutes with all the elements 
of the Lorentz group in the mass-zero limit. 

An additional example of an improper operator is 
the position operator, which can be written1a 

x = Np~1 + ip/2p~ - (P xw)lmpo(m + Po), 
(4.5) 

W =: (WI' W2, wa). 

In the mass-zero limit we have, using the helicity 
diagonal form, 

x~ = UX1U- 1 = ialapl + SI[PIPa/lp12 (p_p+)i] 

+ S2[P2/1pl (p_p+)i] - Sa[PaP2/lpl (P_p+)], 

x~ = ialap2 - SI[P2Pa/lpl2 (p_p+)i] 

- S2[Pl/lpl (p_p+)i] + Sa[PaPl/lpl (P_p+)], 

x~ = ialapa + SI[(p_p+)i/lpn. (4.6) 

13 C. Kuang-Chao and M. I. Shirokhov, Zh. Eksperim. 
i Teor. Fiz. 34, 1230 (1958) [English trans!.: Soviet Phys.­
JETP 7, 851 (1958)]. 
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FIG. 1. The do­
mains Dl and D. 
for a pure Lorentz 
transformation 
along the x axis. 

Improper operators are thus to be considered 
perfectly definable even in the mass-zero limit. How­
ever, as the limit is approached they take on an 
increasingly nonphysical character, due to the fact 
that they resolve states which are physically un­
resolvable. 

Let us briefly summarize the above discussion. 
From (3.2) we obtain the result that states with 
similar wavefunctions in the helicity diagonal rep­
resentations are certainly distinguishable. By similar 
wavefunctions we mean the following: Two wave­
functions are said to be similar if all nonzero com­
ponents of the same helicity differ at most by a 
constant phase factor. Thus 

8 1(P) = (00 if;(P) 00) (4.7a) 

and 

(4.7b) 

are similar wavefunctions. That states with similar 
wavefunctions but different spin are resolvable is 
due to the occurrence of S+ and S_ operators in the 
expressions (3.2). The coefficients, in the generators, 
of these operators vanish in the mass-zero limit. 
In this limit no proper operator will resolve states 
with different spin but similar wavefunctions. Im­
proper operators, which will do this, become non­
physical in this limit in a continuous manner. 

5. THE LIMIT FROM BELOW 

The zero-mass limit of imaginary mass "particles" 
has many features in common with that of real 
mass. There is one new feature, however. The 
manifold p~p~ = m2 < 0 is a connected one-sheet 
hyperboloid. For the zero-mass limit the irreducible 
representations are direct sums of irreducible rep­
resentations characterized by a definite sign of the 
energy. The representations (2.6) do not lend them­
selves to this limit. We proceed as follows. Restrict-

ing ourselves for the moment to the scalar case, 
consider the following substitutions of wavefunctions 

[ 
O(x)if;(O, cp, x) 1 if;'(O, cp, x) == 

O( -x)if;(O, cp, x) 

and of operators 

(5.la) 

O'Cx0cp) == [ OCx) O(x) l0(xocp). (5.lb) 
O(-x) O( -x) 

x, 0, and cp have been defined above [Eq. (2.5)]. 
O(x) is a unit step function. The scalar product is 
then invariant under the substitution (5.la). Further­
more one has, from (5.lb), O~.O~. = O~.A.' where 
o A is an operator corresponding to a Lorentz trans­
formation A. Thus the substitutions (5.1) yield the 
identical representation. 

Utilizing [O(X)]2 = O(x), O(x)O( -x) = 0, we have 

O'if;' = [O(lxl Ocp) 0 1 [ O(x)if; 1 
o O( -Ixl Ocp) O( -x) if; 

+ [ [oCx), ON I. (5.2) 
[O( -x), ON 

Now 

[O(x), O]if;(xOcp) = [(D1(A»if;(A-1[O, cp, x]), 

[O( -x), O]if;CxOcp) = [(D2(A»if;(A- 1 [O, cp, x]), 
(5.3) 

where [(D(A» equals unity if the point (x, 0, cp) 
lies in the domain D(A), and equals zero otherwise. 
D1(A) consists of all those points whose zero com­
ponent changes from positive-definite to non-posi­
tive-definite under the Lorentz transformation A. 
D 2(A) is the domain over which the change is from 
negative-definite to non-negative-definite. For a pure 
Lorentz transformation along the x-axis, the situa­
tion is illustrated in Fig. 1. 

Clearly, only pure Lorentz transformations need 
be considered since [O(x), M] = 0, the sign of the 
energy being unaffected by space rotations. If now 
if; (x, 0, cp) is zero for all points in Dl or D 2, i.e., 
if D' = Dl U D 2 , and 

supp if;CxOcp) 1\ D'(A) = 0, (5.4) 

then the second term in (5.2) is zero. Now let 
u = sinh-1 [vl(l - v2)i] characterize the Lorentz 
transformation. Its magnitude determines the mag­
nitude of n in Fig. 1 and hence the size of the domains 
Dl and D 2 • If (5.4) holds for A(u) then it holds 
for all u' < u (smaller angle n). Let Umax be the 
largest u producible in a laboratory. If (5.4) holds 
for A (umax), the last term in (5.2) is zero for all 
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Lorentz transformations executable in a laboratory 
and the representation becomes "physically re­
ducible" into a direct sum of irreducible representa­
tions. If D"(U) is the sum of the domains D'(A(u» 
and D'(A( -u», then all points with 

IPol = IT Isinh xl < IT Isinh ul (5.5) 

are in D"(U) (see Fig. 2). By (5.5), if the wave­
function l/t equals zero for (x, (J, ip) C D"(um",:;}f 
the representation is physically reducible. In the 
limit as IT goes to zero, (5.5) states that the top 
and bottom light cones are open sets (i.e., excluding 
the origin). 

To examine the zero-mass limit of the nonscalar, 
imaginary-mass representations, we combine the 
substitutions (5.1) with a transformation to a 
helicity diagonal form. To achieve the latter, we 
seek a unitary transformation to diagonalize p' M 
(of. Sec. 3). Since, for pJlp" < 0, p·M ~ p·S, the 
transformation is no longer simply a rotation in 
spin space. However, by analogy, we consider the 
ansatz 

(5.6) 

p. 

-----;:~--+--..l'---P, 

FIG. 2. A graphic 
illustration of the 
inequality (5.5). 
Only D'(A(u) is 
shown. The curve 
on the right is the 
positive branch of 
the hyperbola 
P02 - PI2 = -II2. 

N' = i ~ + T (p-p+)! (,pi - Po - .!!.). 
3 Po ops 1 Po Pa + n Ip I 

To cast (5.9) into a form suitable for the transition 
to the limit, and take into account the double 

where To, T I , T2 satisfy (2.7). Accordingly 

e,T,I1Tte-· Tol1 = TI cos /3 - T2 sin /3, 

e,T.I1T2e-· T
• 11 = T2 cos /3 + Tl sin /3, 

e'Tl"'Toe-iT
,a = To cosh a + T2 sinh a, 

eiT,aToe-iTla = T2 cosh a + To sinh a. 

Substituting U into the equation 

Up·MU- t = Ipi To, 

(5.7) valuedness of the energy within the irreducible 
representation, we must transform to the four­
dimensional angle variables (2.5), and utilize the 
substitution (5.1). Thus, for example, 

(5.8) Ni = Mba = ((J~~ (J~~») 
one obtains via (5.7) and much tedious algebra 

a = tanh -1 [ Po(p-p+)! ] 
(lpl2 + Pan) 

= tanh-1 [ sinh x sin (J ] (5.9) 
cosh x + cos (J , 

/3 = tan -1 wdp2) = !1T - ip, 

Mf = UM23U- 1 = -i(PXV")l 

+ TOWl Ipl!p_p+)(l - Pa/lpD, 

M~ = -i(p X V.,)a + TO(P2 Ipl!p-p+)(1 - Pa/lpD, 

M~ = -i(p X V,,)a + To, 

N' -' ~ + T (-P2Pa + n
2
p2 ) 

1 - 'tpo OPt 0 P_P+ IpI2 (Pa + n) 

+ Tl ~ (1 _ (ip12 - Pan)) 
(P-P+) Ipi Po 

X [
.. . a +. nh . a 
't~(J~ip~ 'tta X~(J~F{)(J 

+ 'tanh cos ip ~ 
't x· (J!l sm vip 

(
sin (J cos ip ) + To cot (J cos ip + h [1 + h (J] cos x cos X cos 

+ Tl sin ip( 1 - [ cos\~ xcos () J) 
+ T2 cos (cos (J - sinh x - cosh x)]. 

ip 1+ cosh x cos 0 
(5.10) 

One disadvantage of the form (5.10), however, is 
that the passage to the mass-zero limit is not as 
transparent as in the form (5.9). From the expres­
sions (5.9) we see that all coefficients of T 1, T2 
approach zero as n approaches zero, and the rep­
resentation reduces into a direct sum of an infinite 
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number of one-component, helicity-diagonal rep­
resentations. Except for the energy ambiguity these 
are identical with (2.4). Taking into account (5.2) 
and (5.8), one obtains the direct sum of a double 
infinity of representations-that is, two irreducible 
representations for each sign of the helicity, cor­
responding to the two different signs of the energy. 

We note several interesting facts. First, the rep­
resentations (5.9) and (5.10) for P~\ prior to the 
taking of the limit, are in a reduced form, cor­
responding to the direct sum P~ EB Pil'. Second, 
all the (unitary) P n representations reduce in the 
limit to a direct sum of the physical, one-component, 
mass-zero representations. l4 It is clear that this 
must be so. The unphysical mass-zero representa­
tions are characterized by an "infinite" spin (Le., P 
equals zero whereas W is finite). All the irreducible 
representations for P less than zero, however, are 
characterized by a fixed, finite value of the spin 
(which may, of course, be arbitrarily large, though 
finite). In the limit the spin ceases to be an observable 
but it remains constant as one lets the squared mass 
approach zero from below. It becomes identifiable, 
so to speak, with a % type operator (Le., P and W 
are both zero), rather than a divergent one. 

Since the coefficients of T1 and T2 in (5.9) approach 
zero continuously with the mass, it is clear that 
one may always find a small enough value of the 
(imaginary) mass such that below this value the 
particle is indistinguishable from a zero-mass 
particle. The zero-mass particles which exist in 
nature can be considered as continuous limits of 
particles with real or imaginary mass. Owing to 
the fact that the unphysical, infinite spin, mass-zero 
representations do not admit a continuous descrip­
tion either from above or below it is perhaps not 
surprising that the "particles" to which they cor­
respond do not exist. 

6. SUMMARY AND CONCLUSIONS 

We have investigated the mass-zero limits of the 
non-mass-zero representations and have found that 
both physically and mathematically the mass-zero 
limit is in no way singular. Indeed it is only the 
infinite-spin representations corresponding to W ~ 0, 
P = 0, which do not admit of a continuous descrip­
tion. That is, neither the P > 0 nor P < 0 rep­
resentations reduce to them physically or math­
ematically. 

14 This result implies keeping the spin fixed and varying 
the mass, which is usually the case of physical interest. Using 
the method of group contractions, Robinson has considered 
a limit of a sequence of representations with different spin. 
D. W. Robinson, Helv. Phys. Acta 35,98 (1962). 

The spin of a mass-zero particle is physically 
ambiguous, though for a finite-mass particle the 
spin is definable right up to zero mass. The non­
physical nature of the spin comes on in a continuous 
manner, inasmuch as it becomes increasingly dif­
ficult to perform the measurement of spin as the 
mass approaches zero. Since all experimental 
apparatus have finite parameters of resolution, one 
can always find a value of the mass below which 
the concept of spin has no experimental meaning. 

The helicity of a zero-mass particle does not 
determine its spin. A zero-mass particle with 
helicity q (q must be an integer or half-integer-cf. 
Sec. 2), may, with equal validity, be considered as 
the zero-mass limit of a helicity q state of (a) Any 
massive particle with spin = q + n, where n is 
any nonnegative integer. (b) Any imaginary mass 
"particle" with spin = q - (n + 1), where n is 
any nonnegative integer. (c) Any imaginary mass 
"particle" with P-1W < O( -t) for single (double)­
valued representations. 

The position operator for a nonzero (real)-mass 
particle loses much of its meaning in the mass-zero 
limit. It can still be defined but the indicated measure­
ment cannot be carried out. The mathematical 
expression of this fact takes the form of a super­
selection rule which is turned on, as it were, in a 
continuous manner as the mass goes to zero. 

Finally, we have seen that particles of "sufficiently 
small" imaginary mass are indistinguishable from 
zero-mass particles, and hence cannot be excluded 
on experimental grounds from a physical theory. 
By "sufficiently small" we mean sufficiently small 
in comparison with the resolution parameters of a 
measuring apparatus, as explained in the text. The 
possible inclusion of imaginary mass particles with 
finite imaginary mass into a physical theory has been 
discussed elsewhere. 10 .11 
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APPENDIX A 

In this appendix we sketch the calculation leading 
to Eq. (4.2). The effect of a Lorentz transformation 
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on the wavefunction takes the form 

e,N'U1/t(:p) = e,s"1/t(A -l(U)P) , (AI) 

where 8 is momentum-dependent and is determined 
by Eq. (9) of Ref. 15. In the helicity diagonal 
representation we may rewrite (AI) to read 

e,S"'e,N'U1/t(:p) = e,8,<B'+9l1/t(A -l(U)P) (A2) 

= e,8""1/t(r1(u)p), 

where cos 8' = Pa/lpl. In the limit one finds 

lim e,8,," = (1 + iS2mu/lpi) (A3) 
... ...0 

from which (4.2) follows immediately. 

APPENDIX B 

Particles with zero mass travel only with the 
velocity of light whereas particles with finite (real) 
mass may travel with any velocity less than that 
of light. How then can mass-zero particles be con-

nyu. M. Shirokhov, Zh. Eksperim. i Teor. Fiz. 3S, 1005 
(1958) [English transl.: Soviet Phys.-JETP 8, 703 (1959)]. 

sidered as the continuous limit of non-mass-zero 
particles? 

Let Vmax be the maximum velocity resolvable from 
that of light. Then the maximum resolvable mo­
mentum is 

If, however 
m < (1 - v!ax)l/avmax , (B2) 

where G. is the dimension of the measuring apparatus, 
then 

Pmax < 1/G., (B3) 

and all states of the particle with velocities resolv~ 
vable from that of light are undetectable. 

The limits on the mass in (B2), (4.1a), and (4.3) 
are all different. There are many more limits possible, 
depending both on which experiment we are per~ 
forming and which property of a zero-mass particle 
we wish a particle with infinitesimal mass to simulate. 
If the particle is to be indistinguishable from a 
zero~mass particle in every way, then the mass must 
be less than the lowest of these limits. 
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Continuous-Representation Theory. IV. Structure of a Class of 
Function Spaces Arising from Quantum Mechanics 

JAMES McKENNA AND JOHN R. KLAUDER 
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A.ri.goro~ development of the co?tinuous representation of Hilbert space by bounded, continuous, 
multidimensIOnal phase-space functIOns ",(p, q) is presented. It is shown that these functions form 
a closed subspace of £2(p, q) whose elements are functions and not equivalence classes. Differential 
properties are investigated and it is pointed out that there are a multitude of definitions whereby 
",(p, .q) possesses continuous derivatives of all orders. In one of these definitions, each ",(p, q) is pro­
portIOnal to a multidimensional, entire function I( q - ip), establishing a connection between Barg­
~ann's Hilbert space of entire functions and one example of a continuous representation. Attention 
IS devoted to the purely functional characterization of the continuous representation by means of 
the reproducing kernel as a special case of Aronszajn's general theory. Properties of various operators 
in a continuous representation are carefully defined. 

1. INTRODUCTION 

CONTINUOUS representations of Hilbert space 
have been introduced abstractly in Part 1,1 

and a few of their quantum mechanical applications 
have been discussed in Parts II and III. 2 However, 
irrespective of any possible applications, functional 
representations of Hilbert space certainly have an 
intrinsic interest all their own. In this paper, there­
fore, we examine one important class of functional 
representations afforded by continuous representa­
tions in considerable detail and rigor, and relate 
these representations to more familiar ones. As our 
example we consider the phase-space continuous 
representations pertinent to the description of N 
quantum-mechanical degrees of freedom. This ex­
ample serves both to illustrate the machinery needed 
to discuss a continuous representation in an infinite­
dimensional Hilbert space, as well as to form an 
important preliminary for a continuous representa­
tion of boson fields as functionals on test functions 
to be discussed in a subsequent paper. 

In a certain sense, the function spaces we discuss 
constitute generalizations of the I-Iilbert space of 
entire functions first considered by Segal,3 and more 
recently studied in great detail by Bargmann,4 and 
subsequently employed by him in a discussion of 
representations of the rotation group.5 Additional 

1 J. R. Klauder, J. Math. Phys. 4, 1055 (1963), referred 
to as I. 

2 J. R. Klauder, J. Math. Phys. 4, 1058 (1963), referred 
to as II; J. Math. Phys., 5,177 (1964), referred to as III. 

3 I. E. Segal, Proceedings of the Summer Seminar, Boulder, 
Colorado, 1960. Vol, II. Mathematical Problems of Relativistic 
Physics (American Mathematical Society, Providence, Rhode 
Island, 1960). 

4 V. Bargmann, Communs. Pure App!. Math. 14, 187 
(1961). 

i V. Bargmann, Rev. Mod. Phys. 34, 829 (1962). 

applications of this space have been made by 
Schweber to Feynman quantization.6 More recently, 
Sudarshan and Glauber have employed a closely 
related Hilbert space in order to study light beams.7 

These applications provide additional motivation for 
our present study. 

Fundamental for the construction of a continuous 
representation is the notion of an overcomplete 
family of states (OFS) which generates the con­
tinuous representation.1 In order to make this paper 
self-contained, we restate the properties defining an 
OFS, and analyze in detail the OFS pertinent to 
our continuous representations. In so doing con­
siderable information regarding the associated con­
tinuous representations is also gleaned. 

Prior to defining an OFS and outlining the con­
tents of the paper, we settle a few basic questions 
of notation. Throughout the paper, the term Hilbert 
space means an infinite-dimensional, separable 
Hilbert space defined over the field of complex 
numbers. If Sj is a Hilbert space and 'IF' E Sj, 'IF E Sj, 
then the inner product is denoted by ('IF', 'IF), which, 
conforming to quantum-mechanical usage, is linear 
in the second term and conjugate linear in the first. 
The norm of 'IF is //'IF/I = ('IF, 'IF);. The commutator 
of two operators, X and Y, defined on Sj is always 
defined as 

[X, Y] = XY - YX. (1.1) 

The postulates defining an OFS can now be 
listed. 1 Let Sj be a Hilbert space, and let ~ be the 
set of all unit vectors in Sj. Then a subset @5 C ~ 

6 S. S. Schweber, J. Math. Phys. 3, 831 (1962). 
7 E. C. G. Sudarshan, Phys. Rev. Letters 10, 277 (1963)' 

R. J. Glauber, Phys. Rev. Letters lO, 84 (1963); Phys. Rev: 
131, 2766 (1963). 
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is called an OFS if it satisfies the following three 
postulates. 

Postulate 1. (Local density and continuity.) For 
each <1> E @5 and every 0 > 0, there exists a vector 
<1>' E @5 different from <1> for which 11<1> - <1>'11 < 0. 
The set @5 is an arcwise connected subset of ~ or 
a union thereof. 

Postulate 2. (Label continuity.) There is a Haus­
dorff space £ (called the "label" space) and a 
mapping mt of £ onto @5. This mapping is weakly 
continuous, by which we mean the following. If 
l E £ and mt maps lonto <1>[1] E @5, then (<1>[l], 'It) 
is a continuous function with respect to the topology 
of £ for every 'It E ~. 

Postulate 3. (Completeness and resolution.) The 
set @5 spans the space ~,i.e., the completion in norm 
of the set of all linear combinations of elements in 
@5 yields ~. The identity operator in .p can be 
resolved into an integral over projection operators 
onto individual vectors in @?>. 

In this paper, we study in detail the OFS defined 
roughly as follows. Let .p be an arbitrary Hilbert 
space and let Q and P be two linear, self-adjoint 
operators defined on .p, which satisfy the commuta­
tion relations (we set h = 1): 

(Q, P] = iI, (1.2) 

where I is the unit operator. If <1>0 E .p is an arbitrary, 
fixed unit vector, we define the set @5 to be the 
collection of vectors 

(1.3) 

for all real p and q. The corresponding continuous 
representation of ~ is the space of functions 

if;(P, q) = (cfl[P, q], 'It), (1.4) 

for all 'It E .p.2 Throughout the paper a continuous 
representation always implies a phase-space con­
tinuous representation of the character of (1.3) 
and (1.4). 

The contents of the body of this paper can now 
be summarized. In Sec. 2 we generalize and make 
mathematically rigorous the definition of @5 given 
by (1.3). In particular, as regards the generalization, 
the label space is taken to be 2N-dimensionaI rather 
then 2-dimensionaI, corresponding to N degrees of 
freedom. The proof that the set @5 defined in Sec. 2 
constitutes an OFS is given in Sec. 3. Section 4 is 
devoted to constructing the continuous representa­
tion of .p generated by @5. The main topic of this 
section is how the differentiability of the functions 
if;(p, q) in the continuous representation depends on 
the choice of cflo• The intimate connection between 

the theory of continuous representations and 
Aronszajn's theory of Hilbert spaces with kernel 
functions is developed in Sec. 5.8

•
9 Finally, Sec. 6 

is devoted to the form taken by linear operators 
in a continuous representation of ~. Examples of 
several important operators are given. 

Before proceeding to the main part of the paper, 
we should like to comment on the methods we have 
used in proving some of our results. It will soon 
become apparent that a theorem of von Neumann's, 
which provides us with a canonical map of our 
abstract space ~ onto the space of square integrable 
functions, plays a crucial role in many of our proofs. If) 
Most importantly, it allows us to use the powerful 
machinery of the theory of Fourier transforms in 
L2 in proving Theorem 3.1, which is the central 
theorem of the paper. In a certain sense, we feel 
that this is a drawback to our paper, for von Neu­
mann's theorem severely restricts us in attempts 
to generalize our results to the case where the label 
space is a space of test functions. Nevertheless, we 
were unable to prove several crucial results without 
the aid of this theorem. Whenever we found that 
we could replace von Neumann's theorem by more 
general techniques, however, we did so for the sake 
of generality, even if the cost was a slightly longer 
proof. 

2. DEFINITION OF THE OVERCOMPLETE FAMll.Y 
OF STATES 

As stated in the introduction, we are interested 
in considering an arbitrary Hilbert space ~, and 
the OFS @?>, @?> C .p, consisting of all unit vectors 
of the form e-iqPeiPQcflo, where cflo is an arbitrary, 
but fixed, unit vector in ~. [We do not impose here 
the constraints (cflo, Pcflo) = (cflo, Qcflo) = ° required 
in II for specific applications.] This corresponds to 
a quantum-mechanical system with one degree of 
freedom, and to generalize this to a system of N 
degrees of freedom, we first introduce 2N self-adjoint 
operators Qa and P a, a = 1, 2, '" , N. We assume 
that these operators satisfy the commutation 
relations 

[Q", Pp] = ioapI, (Qa, Qp] = 0, [P '" P/l] = 0, (2.1) 

where oall is the Kronecker delta function. We then 
consider the set of vectors @5, defined for all values 
of the rea] variables q", and pa, 

N II e-i(laPctei'PaQa~o. (2.2) 
a-I 

8 N. Aronszajn, Proe. Cambridge Phh. Soc. 39,133 (1943). 
~ N. Aronszajn, Trans. Am. Math.Soc. 68, 337 (1950). 
10 J. von Neumann, Math. Ann. 104/ 570 (1931). 
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As is well known, the operators Q" and P" are 
unbounded, and as a consequence are somewhat 
awkward to handle directly. The operators e'hQa 

and e-·aaPa
, however, when appropriately defined 

are unitary operators, and hence much nicer to 
work with. Keeping this in mind, we reformulate 
the definition of ~ by starting ab initio with an 
appropriate set of 2N unitary operators. 

To facilitate this construction, we first recall the 
following definition. A one-parameter group of 
unitary operators on 4> is a function U[t] defined 
on the whole real line and taking on values in the 
set of unitary operators mapping .\) onto itself. 
In addition, U[t] satisfies the relations 

U[O] = I, U[8]U[t] = U[8 + t], (2.3) 

where I is the unit operator. ll The one-parameter 
group of unitary operators U[t] is said to be strongly 
continuous if, for all 'Ir E .\), 

lim II(U[t] - I)'lrll = O. (2.4) 
1-0 

Let there be 2N strongly continuous, one-param­
eter groups of unitary operators Va[qa] and Wa[Pa], 
a = 1, 2, ... , N. Let these operators satisfy the 
following relations: 

[Va[qa], Vp[qp]] = 0, [Wa[Pa] , Wp[Pp]] = 0, 

Va[qa]Wp[Pp] = e-i".B •• 8·~Wp[pp] V a[qa]. 
(2.5) 

If q denotes the set {q a I and p denotes {pp I, then 
we define 

N N 

'U[q] == II Va[qa], W[P] == II Wp[Pp], 
,,-1 P-1 (2.6) 

U[p, q] == 'U[q]W[P]. 

Now if <l?o E 4> is an arbitrary unit vector, set 

<I?[p, q] = U[p, q]<I?o, (2.7) 

and @) is the set of all <I?[p, q] as (p, q) varies over 
RN X RN, where RN denotes the N-fold direct 
product of the real line with itself, supplied with 
the product topology. We take RN X RN, supplied 
with the product topology, as the label space £, 
and the map mt: is defined by (2.7), namely mt:: 
(p, q) ~ <I?[p, q]. The replacement of the ordinary 
commutation relations (2.1) by the relations (2.5) is 
due to Weyl.12 

The set 10 defined by (2.7) depends on the choice 
of the unit vector <l?o (hereafter referred to as the 

11 F. Riesz and B. Sz.-Nagy, Functional Analysis (Fred­
erick Ungar Publishing Company, New York, 1955), p. 380. 

12 H. Weyl, The Theory of GrOUP8 and Quantum Mechanics 
(Dover Publications, Inc., New York), p. 274. 

"fiducial vector"), and some of the consequences 
of this dependence will be the subject of later sections 
of this paper. The set 10 also depends on the rep­
resentation of the operator U[p, q], but this depend­
ence is much less fundamental and can be settled 
now. The problem of determining all possible rep­
resentations of U[p, q] was completely solved in a 
celebrated paper by von Neumann. 1o We summarize 
in the following theorem those results of Von 
Neumann's paper which will be of basic importance 
for our work. 

Theorem (von Neumann). Let.\) be an arbitrary, 
separable Hilbert space, and Va[q,,], Wa[Pa], a = 
1, 2, ... , N, be 2N strongly continuous,13 one­
parameter groups of unitary operators on 4> which 
satisfy relations (2.5). Then 4> can be decomposed 
into the direct sum of a finite or countably infinite 
number of mutually orthogonal, closed subspaces, 
.p = E .. EB .p .. , such that each subspace is simulta­
neously invariant under the groups of operators 
Va[qa] and Wa[Pa], a = 1,2, ... ,N. The representa­
tions of these groups induced on .p.. and .\)'" are 
unitarily equivalent to one another for all nand m. 
Furthermore, there is a unitary map T .. of each 
.p.. onto the Hilbert space L2(RN) of Lebesgue­
measurable, complex-valued functions of N real 
variables, t(X1, ... , XN), which are square integrable 
over RN • This unitary map T .. has the important 
property that it maps the representation of the 
operators Va[qa] and Wa[Pa] induced on .\) .. onto 
the operators defined as follows: 

T .. V a[qa]T;lt(x1, ... ,XN) 

(2.8) 

T .. Wa[Pa]T;lt(x1, ... ,XN) 

= eih~at(X1' ... ,XN)' (2.9) 

The representation given by (2.8) and (2.9) is 
called the Schrodinger representation, and we call 
the unitary map Tn the Schrodinger map. When 
dealing with an irreducible representation of the 
operators, the Schrodinger map is denoted simply 
by T. 

It follows from von Neumann's theorem, that if 
we demand that the family of operators U[p, q] be 

13 In his paper, von Neumann only required a condition 
much weaker than strong continuity, namely weak measur­
ability. A one-parameter group of unitary operators U[T] is 
said to be weakly measurable if, given any 'JI and ~ in ~, 
the function (~, U[T]'JI) is a Lebesgue-measurable function 
of T. His theorem then showed that in this case weak meas­
urability implies strong continuity. Since this is a technical 
point which seems to have little bearing on what follows, 
we have assumed strong continuity from the start. 
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irreducible, then up to an unitary equivalence, there 
is really only one representation. We always assume 
that we are dealing with an irreducible representa­
tion unless otherwise indicated. In Secs. 4 and 5, 
we discuss some of the consequences of using a 
reducible representation of U[p, qJ, and indicate 
there our reasons for sticking to an irreducible 
representation. 

3. THE DEMONSTRATION THAT @5 IS AN 
OVERCOMPLETE FAMILY OF STATES 

A. Local Density and Label Continuity 

We now show that @? as defined in Sec. 2 is 
indeed an OFS. The first step in this direction is 
to prove that the vectors ep[p, q] E .p are strongly 
continuous functions of their arguments (p, q). To 
this end we first establish 

Lemma 3.1. The function 'O[qJ = II!-l Va[q .. ], 
defined on RN and taking on values in the set of 
unitary operators mapping .p onto itself, is a strongly 
continuous, N -parameter group of unitary operators. 
The same statement is true of the function W[pJ. 

Proof: For fixed q, 'O[q] is unitary since it is the 
product of unitary operators, and the properties 
'0[0] = I and 'O[q]'O[q'] = 'O[q + q'] are a direct 
consequence of the facts that V,,[qa] is a one­
parameter group for ex = 1, ... , N, and that the 
relations (2.5) are satisfied. The strong continuity 
follows from the fact that for arbitrary 'lr E .p, 
'0 [q]'lr, considered as a function of a single q" is 
strongly continuous, uniformly with respect to the 
remaining N - 1 variables. Let u" be the vector 
with components (ua)p = o"p. Then because the 
V"rqa] are unitary and commute with each other, 
we have 

11'O[q + hUj]'lr - 'O[q]'lrll 

= IlVj[qj + h]'lr - V;[q;]'lrll. (3.1) 

Given any E > 0, we can pick 0 > 0 so that for 
all h satisfying lhl < 0, the right-hand side of (3.1) 
is less than E, and the choice of 0 is independent 
of the remaining N - 1 coordinates. By adding 
and subtracting terms, and using the triangle in­
equality, 11'O[q'Jw - 'O[q]'lrll can be bounded by 
N terms of the form (3.1). As an immediate con­
sequence of the definition of the norm in RN , 

we find Iqal ~ Iql. Hence given E > 0 we can find a 
o > 0 so that for all q' satisfying Iq - q'l < 0, 

we have 1I'O[q'Jw - 'O[q]'lrll < E. The conclusions 
of the theorem clearly hold for w[P] also. 

With the aid of Lemma 3.1 we can now easily 
establish 

Lemma 3.2. The vector valued function ep[p, q], 
defined on RN X RN, is strongly continuous in the 
product topology of RN X RN • 

Proof: Let (Po, qo) and E > 0 be given. We show 
that there is a 0 > 0 such that for all (p, q) satisfying 
lp - Pol < 0, lq - qol < ° we have lIep[po, qo] -
<P[p, q]/l < E. For 

1I<p[po, qo] - <P[P, q]1I 

= 11'O[qo]w[po]epo - 'O[q]W[P]<po II 
S 11'O[qo]w[po]<Po - '0 [q]W [Po] <Po II 

+ 11'O[q]w[po]<Po - '0 [q]W [P] <Po I I 
= 11'O[qo)w[po]epo - '0 [q]W [Po] epo I I 

+ Ilw[po]<po - w[P]<poll· (3.2) 

Since po is fixed, the strong continuity of 'O[qJ and 
W[PJ allows us to find a ° > 0 such that when 
/p - Pol < 0 and Iq - qol < 0, each of the two 
terms on the right of (3.2) is less than 1E. 

It is clear that Lemma 3.2 shows that @? satisfies 
Postulate 1. Also, since strong continuity implies 
weak continuity, the mapping mz; is weakly con­
tinuous, and Postulate 2 is satisfied by @? 

B. Completeness and Resolution of Unity 

To prove that @? satisfies Postulate 3, that is, 
to prove completeness and the existence of a resolu­
tion of the identity, is a less trivial job. In outline, 
our first step is to give meaning to vector-valued 
integrals of the form 

1 1 dNp dNq 
'lr = RN RN 1f(P, q)<P[p, q] (211')!N (211')!N , (3.3) 

and to operator-valued integrals of the form 

dNp dNq 
X (211')tN (211')tN' (3.4) 

In (3.3) and (3.4), 1f(p, q) and b(p, q) are scalar­
valued functions, 

and <p[p, q]ept[P, q] is the projection operator defined 
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for every '1' E S) by 

<fl[p, q]<flt[p, q]'1' = (<fl[p, q], '1')<fl[p, q]. (3.5) 

In order to simplify the notation in the future, 
an integral sign with no limits always denotes an 
N-fold integral over RN , and we often employ the 
abbreviation 

dNp dNq 
dp.(p, q) == (2'II}N (2'II}N' 

The second and last steps are to show that every 
vector '1' E S) can be represented in the form (3.3) 
and that the unit operator can be represented in 
the form (3.4). 

In order to define integrals of the form (3.3) we 
must first study all functions of the form 

",(p, q) = (<fl[p, q], '1'), (3.6) 

where '1' is an arbitrary vector in S). Since <fl[p, q] 
is a strongly continuous function of (p, q) it is 
a fortiori weakly continuous. Hence ",(p, q) is a 
continuous function of (p, q). However, it can be 
seen from the proof of Lemma 3.2 that, in general, 
",(p, q) is not uniformly continuous. An application 
of Schwartz's inequality shows that 

(3.7) 

A more remarkable property of each of the func­
tions (3.6) is that they are square integrable: 

In order to prove this statement, we appeal to 
von Neumann's theorem. Let CPo(x) and ",(x) be 
the functions in L2(RN) corresponding to <flo and 
'1' under the Schrodinger map T. Then the function 
corresponding to <fl[p, q] under T is 

T<fl[p, q] = eiP'(x-q) CPo (x - q), (3.9) 

and since T is unitary, we must have 

",(p, q) = J e-iP'(J:-q)cp~(x - q)"'(x) dNx. (3.10) 

We first note that after making the change of 
variables x ~ x + q in the integral (3.10), "'(p, q), 
for fixed q, can be considered the Fourier transform 
of the integrable function 

hex, q) = (27r)tNcp~(X)"'(x + q). (3.11) 

Furthermore, since CPo (x) and ",(x) are both in 
L 2(RN ), hex, q) is a measurable, square integrable 
function of x and q on RN X RN. This can be proved 
as follows. Since ",(x) and CPo(x) are measurable in 

RN, hex, q) is measurable in RN X RN. In addition, 
we have 

J Ih(x, qW dNq 

= (27r)N J Icp~(x)12 I"'(x + q)1 2 dNq 

= (27r)N Icp~(x) 12 J 1 "'(r) 12 dNr 

= (27rt Icp~(x) 12 II'1'W. 

Hence it is clear that 

J dNx J Ih(x, q)1 2 d~q 

= (27rt II'1'W J IcpMxW dNx 

= (27r)N II'1'W II<floW = (27rt II'1'W, 

(3.12) 

(3.13) 

and by the theorems of Tonelli and FubinF4 it 
follows that Ih(x, qW is integrable, the integration 
can be performed in any order [thus yielding the 
result (3.13)], and also 

J Ih(x, q)12 dNx 

exists for all q except possibly for those forming 
a set of measure zero in RN • Therefore, for all 
fixed q, except those forming a set of measure zero, 
",(p, q) is the Fourier transform of a function in 
L\RN) n L2(RN); and so as a function of p 

2 ' ",(p, q) E L (RN ) for almost all q. Now we can 
employ Parseval's theorem'5 and for almost all q 
we obtain 

We have already proved, however, that the right­
hand side of (3.14) is an integrable function of q, 
and the value of the repeated integral is given in 
(3.13). A final appeal to Tonelli's theorem concludes 
the proof that ",(p, q) E L2(RN X RN)' As a by­
product of these manipulations, we have shown that 

If we set X(p, q) = (<I>[p, q], A) for some A E S), 
then the same methods quickly yield the result 

II ",*(p, q)}..(P, q) dp.(p, q) = ('Ir, A). (3.16) 

14 E. J. McShane, Integration (Princeton University Press 
Princeton, New Jersey, 1944), pp. 137, 145. ' 

16 S. Bochner and K. Chandrasekharan, Fourier Transforms 
(Princeton University Press, Princeton, New Jersey, 1949), 
p.120. 
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Let US summarize these results in 

Theorem 3.1. If 'it E ~ is an arbitrary vector, 
define the function y,.(p, q) = (<t[p, q), 'it). Then 
y,.(p, q) is a continuous, bounded function, with an 
upper bound !I'itll. It is furthermore a square 
integrable function: the integral of its square, 
according to (3.15), is the square of the norm of 
'it. If >-(p, q) = (1)[p, q], A) is another such function, 
then the inner product ('it, A) is given by (3.16). 

We now give a meaning to the integral written 
down formally in (3.3). Let y,.o(p, q) be an arbitrary, 
measurable, complex-valued, square integrable func­
tion. Then the integral 

'ito = II y,.o(P, q)1>[p, q} dJJ.(P, q) (3.17) 

is defined to be that element of ~ whose inner 
product, ('ito, 'it), with an arbitrary 'it E ~, is 
given by 

(3.18) 

in which 

y,.(p, q) = (1)[p, q), 'it). 

Theorem 3.1 ensures that such y,.(p, q) are square 
integrable so that the integral (3.18) exists for all 
'it E ~. The integral (3.17), defined by (3.18) is 
known as a Pettis integral and its properties have 
been investigated. 16 In particular, it has been shown 
that the existence of (3.18) for all 'it E ~ is a 
necessary and sufficient condition that (3.17) be a 
uniquely defined vector in ~. 

Weare now in a position to prove 

Theorem 3.2. Let 'it E ~. Then 

'it = II (1)[p, q), 'it)1>[P, q} dJJ.(P, q). (3.19) 

Proof: From Theorem 3.1, we know that l/I(p, q) = 
(1)[p, qj, 'it) is square integrable, so the right-hand 
side of (3.19) is a well-defined vector in ~. Denote 
the right-hand side of (3.19) provisionally by 'it'. 
If A E ~ is any other vector, we have 

(A, 'It') = If (A, 1>[p, qJ)(1)[p, q), 'it) dJJ.(P, q). (3.20) 

Equation (3.20) is just the definition of the vector­
valued integral. But according to Theorem 3.1, the 

18 E. Hille and R. S. Phillips, Functional Analysis and 
Semi-Groups (American Mathematical Society, Providence, 
Rhode Island, 1957), pp. 76-78. 

right-hand side of (3.20) is just (A, 'it). Therefore 
(A, 'it - 'it') = 0 for all A E ~, and hence 'it' = 'it. 

An immediate and important consequence of 
Theorem 3.2 is that the closed subspace spanned 
by @5 (the closure of the set consisting of all finite 
linear combinations of elements of @5) is just .p 
itself. In other words @5 is complete in ~. Let [ei) 
denote the subspace spanned by @5. Then if [@?i) ¢ ~, 

let 'It E ~ - [@?i), where ~ - [@?i) is the orthogonal 
complement of [@5j in ~. This implies in particular 
that (1)[p, q], 'It) :=; 0, but then by Theorem 3.2, 
it follows that 'It = O. Therefore [@5j = ~. We list 
this result as 

Lemma 3.3. @?i is complete in ~, that is, the closed 
subspace spanned by @5 is ~ itself. 

It is now a straightforward matter to define a 
certain type of operator-valued integral and to prove 
the resolution of the identity formula. Let b(p, q) be 
a bounded, measurable function. Then the integral 

(3.21) 

is defined to be that operator which maps the vector 
'it E ~ onto 

B'it = If b(p, q)(1)[P, q}, 'it)1>[P, q} dJJ.(P, q). (3.22) 

Since b(p, q) is bounded, B'it is well-defined. Further, 
if 'it, A E ~ and a is any complex number, then 
because (1)[p, q], a'it+A)=a(1)[p, q], 'it) + (1)[p, q], A), 
and because the integral is a linear operation, it is 
clear that the operator B, as we have defined it, 
is a linear operator. In particular if we set b(p, q) :=; 1, 
a reference to Theorem 3.2 shows that we obtain the 
unit operator. We list this result as 

Lemma 3.4. The unit operator may be expressed as 

I = II 1>[p, q]1>t[P, q} dJJ.(P, q). (3.23) 

This completes the proof that the set @?i is indeed 
an overcomplete family of states. Lemma 3.2 shows 
that @5 satisfies Postulates 1 and 2, and Theorem 3.2 
and Lemmas 3.3 and 3.4 demonstrate that @S satisfies 
Postulate 3. 

4. THE CONTINUOUS REPRESENTATION OF ~ 
GENERATED BY ~ 

A. The Definition of ~ 

In the first part of this section we use the results 
of Sec. 3 to construct the continuous representation, 
~, of 4> generated by @S. Since the properties of 
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the functions forming (i): depend very strongly on 
the choice of the fiducial vector used in the definition 
of @5, we are in effect going to construct a large 
number of function spaces. 

We assume here, as in earlier sections of this 
paper, that we have an irreducible representation 
of the family of operators U[p, q] defined on the 
separable Hilbert space .p. We have seen that if 
'It E .p, then the relationship 

0¥ = 1/I(P, q) = (<1>[p, q], 'It) 

provides us with a map, C, of .p onto a class of 
bounded, continuous, square integrable functions. 
This family of functions is clearly a linear vector 
space, which we denote by (i):. As we soon see, (i): 

depends strongly on the fiducial vector <1>0 which 
enters in the definition of C. When it is necessary 
to emphasize this point, we refer to the space (i): 

corresponding to the fiducial vector <1>0' 
We can supply (i): with an inner product in a 

natural fashion. If 1/1' (p, q) and 1/I(P, q) are element 
of (i):, then set 

(1/1', 1/1). = II 1/I'*(P, q)1/I(P, q) dJ.l(P, q). (4.1) 

From now on, all inner products and norms in (i): 

have a subscript c appended in order to distinguish 
them from inner products and norms in .p. The null 
element of (i): is 1/I(p, q) == 0, and because of the 
continuity of the functions in (i):, (1/1, 1/1). = 0 if and 
only if 1/I(p, q) == O. There are thus no difficulties 
in showing that the inner product in (i): defines a 
norm. Theorem 3.2 can now be used to show that 
the map C is one-one. For suppose C'It' = C'It, i.e., 
1/I'(p, q) == 1/I(P, q) and hence 0 == (<1>[p, q], 'It' - 'It). 
Then Theorem 3.2 shows that 'It' - 'It = O. Further­
more, Theorem 3.1 shows that the map C is isometric, 
and Theorem 3.2 shows that C- 1 is defined on all 
of (i):. It follows that (i):, supplied with the inner 
product (4.1), is the unitary image of .p, and hence 
in particular it must be complete. We sum these 
results up. 

Theorem 4.1. The set of functions, (i):, given by 
1/I(p, q) = (<1>[p, q], 'It) for all 'It E .p, is a family 
of bounded, continuous, and square integrable func­
tions. When supplied with the inner product (4.1) 
the set (£ is a complete Hilbert space which is 
unitarily equivalent to the original space .p under 
the unitary mapping C 

C'It = (<1>[p, q], 'It) = ",(p, q), 

C-1 1/1(P, q) = I 1/I(P, q)<1>[p, q] dJ.l(P, q) = 'It. 

~ is called a continuous representation of .p. 

(4.2) 

(4.3) 

An important characteristic of the continuous 
representations (i): should be noted here. Namely, 
the elements of (i): are single functions, and are not 
equivalence classes of functions, as are the elements 
of L2(RN), for example. 

As an application of this theorem, let us pick ~ 
to be L2(RN) and <1>[p, q] = e'P'(Z-Q)rpo(x - q). Then 
we get the transform pair 

1/I(P, q) = J e-'P'(Z-q)rp~(x - q)1/I(x) dNx, (4.4) 

1/I(x) = I 1/I(P, q)e'P'(Z-q)rpo(x - q) dJ.l(P, q), (4.5) 

where the integral (4.5) is to be defined in the 
sense of a Pettis integral. 

B. Differentiability and Growth Properties 

We now show that by suitably choosing the 
fiducial vector <1>0, each 1/I(p, q) E (i): can be guaranteed 
a certain minimum number of derivatives. In order 
to do this, we first examine the infinitesimal gen­
erators of the groups Va[qa] and Wa[Pa]. A well­
known theorem due to Stone17 states that every 
strongly continuous, one-parameter group of unitary 
transformations {T[t]} is generated by an infinites­
imal transformation iA, where A is a self-adjoint 
transformation which is, in general, unbounded: 

T[t] = eilA
, iA = lim'!t (T[t] - 1). (4.6) 

t~O 

The limit in (4.6) is taken in the strong sense. 
Furthermore, an element 'It E .p is in the domain 
of A if and only if 

lt~ {t (T[t] - 1)'It} (4.7) 

exists in the strong sense. 
We can apply Stone's theorem to our one-param­

eter groups and write 

Va[q.,] =e- i 
•• 

P
., W.,[p.,] =e,,,·Q·. (4.8) 

(The minus sign is inserted in the application of 
Stone's theorem to V a [q ,,] so that P a will have its 
conventional sign in the Schrodinger representation.) 
It is well known that in the Schrodinger representa­
tion, the operators P a and Q a are given by10 

(4.9) 

It is further known that the linear manifold 1) 

consisting of all infinitely differentiable functions 
having compact support is dense in L2(RN), and 

17 F. Riesz and B. Sz.-Nagy, Functional Analysis (Fred­
erick Ungar Publishing Co., New York, 1955), p. 383. 
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that this set of functions is in the domain of all 
polynomials in the PIX and Q IX in the SchrOdinger 
representation.18 On !D, the operators P" and Q IX 

satisfy their well-known commutation relation. 
The :finaI fact we need regarding the infinitesimal 

transformations is the following. Let IDp" and IDQ" 
denote the domains of P" and Q", a = 1,2, ... ,N. 
Then Ufp, q]IDp" C IDp", U[p, q]IDQ" C IDQ", 
a = 1,2, ... ,N. Further, if cP IDp" and'lr E IDo .. , 
then 

P "Ufp, q]CP = Ufp, q](P" + p",I)CP, 

Q",Ufp, q]'lr = Ufp, q](Q" + q",I)'lr, 

where I denotes the unit operator. 

(4.1Oa) 

(4. lOb) 

To prove these results, we note first that if B 
is any bounded operator on .p, and 

iA = lim!t (T[t] - 1), 
'-0 

then 

lim B -t1 
(T[t] - 1) 

1-+0 

= B lim!t (T[t] - 1) = iBA. (4.11) 
' .... 0 

To get this last equality we have used the relations 
(2.5). From Stone's theorem, we know that 

lim Wa[Apa] - 1 = iQ" 
.1".-0 APa 

in the strong sense, and hence the limit exists 
weakly. Therefore 

lJl/Ijap", = -i(U[P, q]Q"CPo, 'lr). (4.13) 

Notice that from Schwartz's inequality 

lal/l/lJp" I ~ IIQ"CPoll 1I'lr1l. (4.14) 

A similar calculation yields, with the help of (4.10), 
the result 

al/l/Uq" = i(P .. Ufp, q]CPo, 'lr) 

= i(Ufp, q]P"CPo, 'lr) + ip"I/I(P, q). (4.15) 

Again note that 

IlJl/I/lJq,,1 ~ tlIP,,'Poll + Ip,,11 11'1'11· (4.16) 
---

18 L. Schwartz, TheQne Des Di8tributions (Hermann & Cie, 
Paris, 1957), Vol. I. The fact that !D is dense in Lt(RN) can 
be deduced from Theorem I, p. 22. A more extended dis­
cussion of this point is given in the Princeton Thesis of 
J. S. Lew, "The Structure of Representations of the Canonical 
Commutation Relations," Princeton University, Princeton, 
New Jersey, 1960 (unpublished). 

For let CI> be in the domain of A, then 

/1[B(I/t)(T[t] - 1) - iBA]CI>1I 

~ IIBIIII[(I/t)(T[t] - 1) - iA]CPII ~ 0 

as t ~ O. Now suppose cP E IDp", then by using 
the relations (2.5), we can write 

(i/ q~)(V ,,[q~] - I)U[P, q]CP 

= e-;""ac'U[p, q](i/q~)(V",[q~] - I)CI> 

+ U[p, q](i/q~)(e-iq.·2Ia - I)CI>. (4.12) 

With the aid of the remark above and Stone's 
theorem, we see that the right-hand side of (4.12) has 
the strong limit U[p, q](P "+p,,,I)CI>, as q~ ~ O. Again 
from Stone's theorem, it follows that U[p, q]CP E IDp ", 

and that (4.1Oa) is true. The proof of the remaining 
part of the statement is the same. These last results 
are well known, although rigorous proofs of them 
do not seem to be readily available. 19 

Suppose, now, that the fiducial vector CPo is in 
the domain of PIX and Qa, a = 1, 2, .. , , N. Then 
for each l/I~, q) E (£, all the first partial derivatives 
exist and are continuous. Consider, for example, 

The continuity of the derivatives follows directly 
from the strong continuity of the family of operators 
U[p, q]. 

It is clear that even if CPo is not in the domain 
of all second-degree polynomials in P" and Q" 
some of the functions l/I~, q) still possess higher­
order continuous derivatives besides the first-order 
derivatives guaranteed them by our choice of CPo. 
In particular, when 'lr is in the domain of all P" 
and Q a, then the corresponding l/I(p, q) possesses 
continuous second-order derivatives. On the other 
hand, if the fiducial vector CPo does not belong to the 
domain of any second-degree polynomial in P a and 
Q .. , then there exist 'lr which are not in the domain 
of any P" or Q .. , and consequently the corresponding 
I/I(p, q) does not possess continuous second derivatives. 

These considerations can easily be extended to 
fiducial vectors, CPo, which are in the domain of all 
polynomials in the P" and Q a of degree ~ n. We 
state these results as a theorem. 

Theorem 4.2. Let the fiducial vector CPo be in the 

18 J. S. Lew, Ref. 18, a.nd J. R. Klauder, Ref. 2. 
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domain of all polynomials in the P a and Q a of 
degree ~ n, and let ~ be the continuous representa­
tion of ~ corresponding to <1>0. Then all the mixed 
partial derivatives, of order up to and including n, 
of each l{;(p, q) E ~ exist. Each such derivative is 
a continuous function and is bounded by a poly­
nomial in IpII, ... , IpNI of degree at most n. 

We can state an even stronger result: 

Theorem 4.3. There exist in ~ dense linear mani­
folds of vectors which are in the domain of all 
polynomials in P a and Qa, a = 1, 2, ... , N; for 
example, the image T-l:o of all infinitely differenti­
able functions of compact support in L2 (RN) under 
the inverse of the Schrodinger map T-\ If we choose 
the fiducial vector <1>0 from this set, then all the 
functions, l{;(p, q), of the space ~ corresponding 
to <1>0, possess mixed continuous derivatives of all 
orders. 

C. Connection to Representations by Entire 
Functions 

It is now natural to ask whether the fiducial 
vector <I> can be chosen so that the corresponding 
continuous representation ~ exhibits some special 
relationship with a Hilbert space of entire functions. 
[For simplicity in what follows, we consider only 
the case N = 1, i.e., l{;(p, q) is a function of just 
two scalar variables, p and q.] We cannot require 
the elements of ~ themselves to be entire functions 
of q ± ip, for each l{;(p, q) E (S: is bounded, whereas 
by Liouville's theorem a nonconstant entire func­
tion cannot be bounded. 

However, it has been pointed out in Part II that 
<1>0 can be chosen so that up to a common multiplica­
tive function each l{;(p, q) is an entire function of 
q - ip. We now extend this investigation and 
determine all those continuously differentiable func­
tions a(p, q) and associated fiducial vectors <1>0 so 
that for fixed a(p, q) and <1>0, the product a(p, q)l{;(p, q) 
is an entire function of q - ip, or possibly of q + ip, 
for all l{;(p, q) E ~. Our chief tool is the fact that 
if a function !(x + iy) is defined at every point 
x + iy, then the necessary and sufficient conditions 
that it be an entire function are that its real and 
imaginary parts have continuous, first-order partial 
derivatives at each point, and that at each point it 
satisfies the Cauchy-Reimann equations. 20 

20 E. O. Titchmarch, The Theory of Functions (Oxford Uni­
versity Press, Oxford, England, 1949), p. 68. The condition that 
the derivatives be continuous is actually superfluous. Of. 
S. Saks, Theory of the Integral (G. E. Stechert, New York, 
1937), p. 199. 

We first show that one cannot choose a(p, q) and 
<1>0 so that a(p, q)l{;(p, q) is an entire function of 
q + ip for alll{;(p, q) E ~. If al{; is an entire function 
of q -I- ip, it must satisfy the Cauchy-Reimann 
equations 

8(al{;)/8q + i 8(al{;)/8p = O. (4.17) 

With the aid of Eqs. (4.13) and (4.15) we see that 
(4.17) can be written as 

(U[P, q]{(8a*/8q - i 8a*/8p)<I>o 

+ a*(Q - iP - ipI)<I>o} , 'l') = 0, (4.18) 

where a* is the complex conjugate of a. Since (4.18) 
must hold for all 'l' E ~ and since U[p, q] has an 
inverse for all (p, q), Eq. (4.18) is equivalent to 

(8a*/8q - i8a*/8p)<I>o 

+ a*(Q - iP - ipI)<I>o = O. (4.19) 

Since <1>0 is independent of p and q and a cannot 
vanish throughout a region, Eq. (4.19) is equivalent 
to the two equations 

(Q - iP + AJ)<I>o = 0, 

8a/8q + i 8a/8p + (ip - X*)a = 0, 

(4.20) 

(4.21) 

where X = p. + iv is an arbitrary complex number, 
independent of p and q. If we go to the Schrodinger 
representation, Eq. (4.20) reads 

(d/dx - x - X)IPo(x) = 0, (4.22) 

which has the solution IPo(x) = Ae!(r+x'). However, 
this function is not an element of L2(R) for any 
value of X, and we can conclude that Eq. (4.20) 
has no solution in ~. 

On the other hand, if al{; is to be an entire function 
of q - ip, the Cauchy-Riemann equations become 

8(al{;)/8p + i 8(al{;)/8q = 0, 

or equivalently 

(iQ - P + XI)<I>o = 0, 

8a/8p + i 8a/8q - (p + X*)a = 0, 

(4.23) 

(4.24) 

(4.25) 

where again X = p. + iv is a complex constant 
independent of p and q. Let <I>o,x denote a solution 
of (4.24) and define the vector <Po,o by the equation 

(4.26) 

then if we substitute (4.26) into (4.24) and use the 
commutation relations (2.5), we see that <Po,o must 
satisfy 

(iQ - P)<po,o = O. (4.27) 
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This is the well-known equation for the ground state 
of an harmonic oscillator, and in the Schrodinger 
representation the unit vector solution of (4.27) is2' 

CPo.o(x) = 'II'-te-lz
'. (4.28) 

This solution is unique up to a constant multiple 
of modulus 1, and so (4.26) gives the essentially 
unique solution of (4.24). Since this fiducial vector, 
and hence any <po.x, is in the domain of all poly­
nomials in P and Q, it follows that ~ consists of 
functions having continuous derivatives of all orders. 

It is further easily verified that 

b,(p, q) = exp IH(P + A*)2 + q2] 

- i!(P + A*)q + ivjJ. - !i - iA(q - ip)} (4.29) 

is a particular solution of (4.25). It should be noted 
that b,(p, q) never vanishes, satisfies Eq. (4.25) for 
all values of p and q, and has continuous derivatives 
of all orders. An arbitrary solution of (4.25) can 
be written in the form a,(p, q) = b,(p, q)c(p, q), 
where c(p, q) satisfies the Cauchy-Reimann equa­
tions (4.23). In other words, every continuously 
differentiable solution of (4.25) is a product of 
bx(p, q) times an entire function q - ip. If we denote 
by ~x the continuous representation of Sj cor­
responding to the fiducial vector <po.x and 1/Ix(p, q) 
the elements of this space, then we can conclude 
from the above results [by setting c(p, q) == 1] 
that every 1/I,(p, q) E ~,can be written as 

(4.30) 

In (4.30), fx(q - ip) is an entire function because 
it satisfies the Cauchy-Riemann equations every­
where and has continuous derivatives everywhere. 

To determine the relationship between the spaces 
~, for different values of A, we employ (4.26). 
If 'IF E Sj and 1/I,(p, q) is the corresponding function 
in ~x, then 

1/I}.(P, q) = (U[P, q]U[.u, -v]<Po.o, 'IF) 

= ei·,,(U[p + jJ., q - v]<po.o, 'IF) 

= e""1/Io(p + jJ., q - v). (4.31) 

Thus every function in ~x is obtained from the 
corresponding function in ~o by a translation and 
multiplication bye"". A further calculation shows 
that 
(3}.(P, q) = e- i .,,-i!A!'-iX(O-i1>l{3o(P + jJ., q - v). (4.32) 

21 In the Schrodinger representation, 'l>o.}. ill given by 
'Po.x(x) = 'IT-lei~(z+.'-!(z+')·. 

If we combine (4.30), (4.31), and (4.32) we see that 
the entire functions r~(q - ip) and fo(q - ip) 
satisfy 

Mq - ip) = e- iX(O-'1>l-t!A!'fo(q - ip - iA*). (4.33) 

N ow ~o can be considered as a space of entire 
functions, fo(q - ip), with an inner product given by 

However, this is just the Hilbert space of entire 
functions, 15, studied by SegaI3 and Bargmann.4 

Furthermore, it has been shown by Bargmann4 that 
Eq. (4.33) relating fx(q - ip) to fo(q - ip) is a 
unitary map of 15 onto itself. In other words the 
class of functions h.(q - ip) is identical with the 
class of functions fo(q - ip). Thus while the choice 
of the separation constant A superfically changes 
the class of functions ~A' the underlying class of 
entire functions is the same in every case. Also, the 
space 15 is the only space of entire functions which 
arises in a natural fashion from a continuous rep­
resentation of the type discussed in this paper. 

D. Reducibility and Irreducibility of Ufp, q] 

We conclude Sec. 4 with a brief discussion of 
the effects of choosing a reducible representation 
of the operator family U[p, q]. Let us assume that 
we can write Sj as the direct sum of two orthogonal 
subspaces, Sj = Sjl EB Sj2, such that Sjl and Sj2 
are both invariant under U[p, q] for all (p, q). If we 
pick the fiducial vector <Po in Sj1, call it <POl, then 
for all 'IF E Sj2, we clearly have (U[p, q]<P01, '1') == O. 
In fact, it can be seen that the continuous representa­
tion arising from this choice of <Po is just the unitary 
image of the subspace Sj1, and not the whole space Sj. 
If we pick as the fiducial vector <Po = <POl EB <P02, 
the direct sum of <POl E Sjl and <P02 E Sj2, then 
the resulting space of functions, 1/I(P, q), does not 
generally form a continuous representation as we 
use the term, because when supplied with the inner 
product (4.1) it is no longer a Hilbert space isometric 
with Sj1 EB Sj2 when the isometry is defined by C 
and C- 1 in (4.2) and (4.3), respectively. (In special 
cases, this isometry may be secured merely by 
scaling the measure djJ.; this is touched on in Sec. 5.) 
Since it can be shown that in most cases this space 
is isomorphic to the direct sum of the continuous 
representations of S)1 and S)2, it suffices to consider 
only continuous representations generated by irre­
ducible representations of U[p, q]. 
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5. CONTmUOUS REPRESENTATIONS AND 
REPRODUCING KERNELS 

A. Definition and Properties of the 
Reproducing Kernel 

Let (;1 be a continuous representation of .p corre­
sponding to the fiducial vector <Po. We associate 
with (;1 a function, X (p', q'; p, q), called the re­
producing kernel, which is defined as follows: 

X(P', q'; p, q) = (U[P', q']<po, U[p, q]<po). (5.1) 

For fixed (p, q), X(P', q'; p, q) is an element of (;1 

when considered as a function of (p', q'), as follows 
directly from the definition, (5.1). From this last 
statement we can deduce the property of the 
reproducing kernel which accounts for its name. 
Let ""(p', q') = (U[P', q']<I>o, 'It) E (;1. Then for 
every (p, q) it follows from Theorem 3.1 that 

(X(P', q'; p, q), ""(p', q'»c 

If x*(p', q'; p, q)y,.(P', q') d}J.(P', q') 

= (U[P, q]<I>o, 'It) = y,.(p, q). (5.2) 

The same reasoning yields the relation 

If X*(p", q"; p', q')X(P", q"; p, q) d}J.(P", q") 

= X(P', q'; p, q). (5.3) 

If x(p', q'; p, q) is viewed as a collection of functions 
in (;1, each function corresponding to a choice of 
(p, q), then it is seen that X(p', q'; p, q) is just 
the image in (;1 of the OFS U[p, q]<po. 

In addition, the reproducing kernel has a number 
of special properties of which we list several of the 
more important. 

1. If ak, k = 1, ... , M, is an arbitrary, finite 
set of M complex numbers and (Pi' qk), k= 1, ... ,M, 
is an arbitrary set of M points in RN X RN, then 

M M 

1: 1: a~akX(p;, q;; Pk, qk) ~ O. (5.4a) 
;-1 k-1 

The sum is (5.4a) is just "1:~1 akU[Pk, qk]<Po W, 
which is obviously nonnegative. From the inequality 
(5.4a) the following relations can be deduced8

: 

X(p, q; r, s) = X*(r, S; p, q), 

x(p, q; p, q) ~ o. 
(5.4b) 

(5.4c) 

2. In addition to (5.4c), our kernel function 
satisfies the stronger condition 

X(p, q; p, q) == 1. (5.5) 

This follows trivially from the definition of X. 

3. X(p', q'; p, q) is a continuous function of its 
variables. It is continuous in (p', q') uniformly with 
respect to (p, q), and similarly it is continuous in 
(p, q) uniformly with respect to (p', q'). This is 
a consequence of the strong continuity of the family 
of vectors <P[P, q] = U[p, q]<po, a result which we 
proved in Lemma 3.2. 

4. As a consequence of the definition (5.1) and 
the commutation relations (2.5), X satisfies the 
relation 

X(p', q'; p, q) 

== e'P'(C1'-C1) X(p' - p, q' - q; 0, 0). (5.6) 

Since X(p, q; 0, 0) is a function in (;1, it is square 
integrable. Thus, up to the phase factor, the kernel 
function is a square integrable, difference kernel. 

5. The arguments used in Sec. 4 can be applied 
equally well to X(p', q'; p, q) to show that by 
suitably choosing the fiducial vector, the kernel 
function will have continuous derivatives. In partic­
ular, a dense set of <Po exist such that the kernel 
function will be infinitely differentiable. 

B. Construction of the Continuous Representation 
from the Kernel Function 

The significance of the kernel function lies in the 
fact that it completely determines the corresponding 
continuous representation. That this should be true 
is not at all surprising. In fact, a general theory of 
Hilbert spaces of functions that possess a reproducing 
kernel has been developed by Aronszajn,s.u and our 
continuous representations are a special case of his 
spaces. However, the continuous representations are 
so rich in structure, that they possess many im­
portant additional properties not shared by all of 
Aronszajn's spaces. 

Aronszajn has shown that starting with a function 
X(p', q'; p, q) that satisfies only condition (5.4a) , 
it is possible to construct a Hilbert space of func­
tions for which X is the reproducing kernel. We out­
line Aronszajn's construction, and then afterwards 
we show how the other properties of X(p', q'; p, q), 
namely Eq. (5.3) and properties 1 through 4 listed 
above, provide the space of functions so constructed 
with those properties which characterize it as a 
continuous representation. 

Let (;11 be the set of all functions of the form 
M 

",,(p, q) = 1: akX(p, q; Pk, qk), (5.7) 
k-1 

where ak is an arbitrary, finite set of M complex 
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numbers, and (Pk, qk) is an arbitrary, finite set of 
M points in RN X RN. ([1 is clearly a linear vector 
space. The null element of ([1 is defined as the 
function Vt(P, q) == O. This last requirement ensures 
that the elements of ~1 (and its completion ([) 
are functions and not equivalence classes of func­
tions. This point has been emphasized earlier, and 
it might be noted here that this is a common charac­
teristic of Aronszajn's function spaces. 

If 
M' 

inequality (5.12) to Vt,,(p, q) - Vt",(p, q), we obtain 

IVt,,(P, q) - Vtm(P, q)1 

(5.13) 

which shows that the sequence Vt,,(p, q) converges 
pointwise to a function Vt(P, q). Equivalent Cauchy 
sequences yield the same limit function. An applica­
tion of the triangle inequality yields 

(5.14) 

ip(p, q) = E (:JkJe(P, q; pL qO, 
k-1 

(5.8) which shows the existence of the lim........ IIVt"lle' 
The norm of Vt(p, q) is then defined to be 

then the inner product of II' and Vt is defined to be 
M M' 

(Vt,ip)c = E E atfJIJe(Pk, qk; pI, qD. (5.9) 
k-1 1-1 

Since Je(p, q; p', q') is an element of ([1 for fixed 
(p', q'), Eqs. (5.7) and (5.9) together yield the 
reproducing property 

Vt(p', q') = (Je(p, q; p', q'), Vt(P, q)c. (5.10) 

Since the kernel satisfies (5.4a) , the inner product 
~1 defines a nonnegative norm, IIVtll: = (Vt, Vt)c. 
The norm of Vt can be expressed as 

M M 

IIVtll= = E E a~akJe(pj, qj; Pk, qk) 
j-1 k-1 

M 

= E a~Vt(pj, qj), (5.11) 
i-1 

which shows that if Vt(p, q) == 0, then IIVtllc = O. 
Conversely, an application of Schwartz's inequality 
to (5.10) yields the inequality 

IVt(P, q)1 ~ II!fllc [Je(p, q; p, q)]l, (5.12) 

which shows that if IIVtllc = 0, then Vt(p, q) == O. 
([1 thus has all the properties of a Hilbert space 
except that in general it is not complete, i.e., it is 
a pre-Hilbert space. 

The standard technique of completing a pre­
Hilbert space is to embed it in the Hilbert space 
consisting of equivalence classes of Cauchy sequences 
from the original space. 22 However, for pre-Hilbert 
spaces such as ([1, Aronszajn has shown that to each 
Cauchy sequence of (£1 there corresponds a unique 
function. If (£1 is enlarged by the addition of this 
set of functions, the resulting space is complete. 
We indicate how this is done, and refer the interested 
reader to Aronszajn's paper for full details. 

Let Vt,,(p, q) be a Cauchy sequence in ~1I i.e" 
IIVt" - Vtmllc -? 0 as n, m -? ro. Then, applying 

Z! S. Bochner and K. Chandrasekharan, Ref. 15, p. 86. 

IIVtllc = lim IIVt"IIc' (5.15) 

The space ~1' augmented by the addition of all 
limit functions !f(p, q) will be denoted by ([. It is 
a Hilbert space of functions allowing the kernel 
function Je(p', q'; p, q). 

It is clear from this outline of the construction 
of ([ that until further properties of the kernel 
function are specified besides (5.4a), little can be 
said about the functions comprising ([. We now 
examine the consequences for (£ of the additional 
properties enjoyed by our kernel function. 

First, conditions 2 and 3 imply that all the func­
tions of ~ are continuous and bounded. For since 
Je(p', q'; p, q) is a continuous function of (p', q') 
for fixed (p, q), all the functions of ~1 are clearly 
continuous. Further, with the aid of Eq. (5.5), 
inequality (5.13) can be sharpened to 

IVt .. (P, q) - Vt",(p, q)1 ~ II!f .. - Vtmllc. (5.16) 

This implies that the Cauchy sequence of continuous 
functions Vt .. (P, q) converges uniformly to the limit 
function Vt(P, q), which therefore also must be a 
continuous function. The sharpened form of in­
equality (5.12) reads 

IVt(P, q)1 ~ IIVtllc. (5.17) 

This holds for all !f(P, q) E (£1 and from the con­
struction of ~ it holds for every element of ([ as well. 
Since RN X RN is a separable space, a theorem 
of Aronszajn's says that ~, being a space of con­
tinuous functions, must be separable.23 

We next show that Eq. (5.6) allows us to get 
simple representations of the one-parameter groups of 
unitary operators Va[qa] and Wa[Pa], a=l, '" ,N, 
which satisfy the commutation relations (2.5), and 
from which in turn we can reconstruct the kernel 

23 N. Aronszajn, Ref. 8, p. 141. 
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function. Let the operators Va[qa] and Wa[Pa] be 
defined as follows: 

(Va[qa]~)(P', q') = ~(P', q' - q"ua), (5.18) 

(W a[Pa]~)(P', q') = eivaqa' ~(P' - PaUa, q'), (5.19) 

where Ua is the vector with components (ua)~ = oa(J. 
In the first place, it can be verified that Va (q a] 
and Wa[Pa] are linear maps of ~1 onto ~1' Two 
easily derived consequences of Eq. (5.6) are the 
identities 

x(p, q - r; p', q') == x(p, q; p', q' + r), 

eiB'qX(p - s, q; p', q') 

== e,s.q' x(p, q; p' + s, q'). 

Then if ~ E ~1' we have 

(V a[qaN)(P', q') = ~(P', q' - qaUa) 
N 

E (:JjX(p', q' - qau ,,; Pj, qj) 
j-l 

N 

(5.20) 

(5.21) 

E fJjX(P', q'; Pj, qj + qaUa) E ~1' (5.22) 
j-l 

N 

= EfJjeiVa(qilaX(p',q';Pj+Paua,qj) E ~1' (5.23) 
j-l 

It is now readily verified that on ~1' Va[qa] and 
Wa[Pa] form 2N, weakly continuous, one-parameter 
groups of unitary operators, a = 1, ... , N, which 
in addition satisfy the commutation relations (2.5). 
The weak continuity follows directly from the form 
of the inner product on ~1' (5.8), and the continuity 
of the kernel function. 

Since ~1 is dense in ~ and the operators Va[qa] 
and Wa[Pa] are bounded, their unique extension to 
bounded operators defined on all of ~ is immediately 
obtained by a standard construction.24 Furthermore, 
the extended operators have the same bounds as 
the unextended operators. However, since each 
element of ~ is the limit of a Cauchy sequence 
of elements in ~1' which converges to its limit 
pointwise, as well as in norm, (5.18) and (5.19) are 
seen to give the definition of Va[q,,] and Wa[Pa] 
everywhere on ~. The extended operators, Va [q a] 
and Wa[Pa], are again readily seen to form two, 
weakly continuous, one-parameter groups of unitary 
operators· which satisfy the commutation relations 

24 S. Bochner and K. Chandrasekharan, Ref. 15, p. 92. 

(2.5). In addition, in the case of a one-parameter 
group of unitary operators, weak continuity is known 
to imply strong continuity.25 

Finally let U[p, q] = II:;-1 Va[qa]Wa[Pa], and let 

~o(P, q) = x(p, q; 0, 0). (5.24) 

so that ~o(p, q) E ~. Then it follows that 

(U[P', q']~o(P", q"), U[p, q]~o(P", q"». 

= (eiP'·(q"-q')x(p" - p', q" - q'; 0,0), 

X eiP'(q"-q) X(p" - p, q" - q; 0, 0». 

= (X(P", q"; p', q'), X(p", q"; p, q». 

= X(p', q'; p, q). (5.25) 

The next step is to show that all the functions 
in ~ are square integrable with respect to the 
Lebesgue measure djJ.(p, q) == (27r)-NdNp dNq, and 
that the inner product in ~ is given by 

(~, ~). = II ~*(P, q)~(P, q) djJ.(p, q). (5.26) 

From property 4 of the kernel function, it follows 
that all the functions of ~1 are square integrable, 
and since the kernel function satisfies Eq. (5.3), 
it is also true that the inner product in ~1 is given 
by (5.26). Thus ~ is also the L2 completion of ~1' 
Consequently, all the functions in ~ are square 
integrable, and their inner product is given by (5.26). 

Finally, with the aid of (5.3), (5.4), (5.5) and 
(5.6), we can construct a unitary map of ~ onto 
L2(RN) , which explicitly exhibits the irreducibility 
of the family of operators U[p, q]. Consider first 
the function 

P(x, y) 

- I . _1_ I (p . 0 0) ip·y N - .l.m. N x, X - y, , e d p, 
(27r) 

(5.27) 

which we rigorously define in a moment. We show 
that P(x, y) can be written as 

P(x, y) = ~o(x)~~(y), (5.28) 

where ~o(x) is a square integrable function of unit 
norm. The function ~o(x) is uniquely determined 
by P(x, y) up to a constant, complex multiple 
of magnitude one. We then show by mapping 
X(p', q'; p, q) onto eiP'(X-q)~o(x - q) that the desired 
unitary map of ~ onto L2(RN) is obtained. 

The function P(x, y) is defined to be the limit 
in the mean of the sequence of functions 

26 F. Riesz and B. Sz.-Nagy, Ref. 11, p. 381. 
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Pix, y) = ~ 1 x(p, x - Yi 0, O)e'P'Y dNp, 
(271") Ipi s .. 

n = 1, 2, ... , (5.29) 

where the region of integration is over the sphere 
Ipi ~ n. The functions p .. (x, y) can be shown to be 
measurable functions in RN in a straightforward 
manner. Furthermore, employing the fact that for 
almost all x, p .. (x + y, y) is the Fourier transform 
of a function of y which is in V(RN ) 1\ L2(RN ), 

we can invoke Parseval's theorem to write 

I IP .. (x + y, y) - Pm(x + y, y)1 2 dNy 

= ~ 1 Ix(P, x; 0, oW dNp. 
(271") mSlplSn 

Since the right-hand side of (5.30) is an integrable 
function of x, we can integrate both sides with 
respect to x, make a linear change of variables in 
the left-hand side, and invoke Fubini's theorem to 
interchange orders of integration, and obtain 

II IP .. (x, y) - Pm(x, yW dNx dNy 

= ( I)N 1 dNp 1 Ix(P, x; 0,0)1 2 dNx. (5.31) 
271" mSlplSn RN 

Equation (5.31) shows that P,,(x, y) is a Cauchy 
sequence in L2(RN XRN) and P(x, y) is defined 
to be its limit in L2(RN X RN)' It then follows that 

II IP(x, y)1 2 dNx dNy 

= (2~t II Ix(P, x; 0,0)1
2 

dNp dNx 

= X(O, 0; 0,0) = 1, (5.32) 

where the last two equalities follow from (5.3) 
and (5.4b). 

Furthermore, when considered as a function of p 
with x held fixed, fx(p) = x(p, x; 0, 0) E L2(RN) 
for almost all x. Therefore, fx(p) has a Fourier 
transform for almost all x which is just the limit 
in the mean of P,,(x + y, y) considered as a function 
of y with x held fixed. By making use of the fact 
that every sequence of functions in L2 which con­
verges in the mean has a subsequence which converges 
almost everywhere, it can be shown that the Fourier 
transform of fx(p) is equal to P(x + y, y) for almost 
all y."6 

26 The authors are indebted to L. A. Shepp for demon­
strating the truth of this statement. 

Two additional properties of P(x, y) are important. 
Because of identities (5.4b) and (5.6), it can be shown 
that P,,(x, y)* = P,,(y, x), n = 1,2, ... ; hence, for 
almost all (x, y), 

P(x, y)* = P(y, x). (5.33) 

Also, for almost all (x, y), we have 

P(x, y) = I P(x, z)P(z, y) dNz. (5.34) 

This can be proved by making use of the fact that 
P(x + y, y) can be considered the Fourier transform 
of x(p, x; 0, 0). With the aid of (5.3) and (5.6), 
we can write 

X X(P - r, x - s; 0, O)X(r, s; 0, 0). (5.35) 

Using Parseval's theorem, the inner integral on 
the right-hand side of (5.35) can be written as 
the convolution of the Fourier transforms of 
X(p - r, x - s; 0, 0) and x(r, s; 0, 0). Making 
a linear change of variables in the resulting integral, 
for almost all (p, x) we obtain 

x(p, x; 0,0) 

= I dNv e- iV
'
P I dNu P(v + x, u)P(u, v). (5.36) 

In Eqs. (5.35) and (5.36) the order of integration 
is immaterial since the integrand is an integrable 
function on RN X RN • Now the inner integral in 
(5.36) is also a square integrable function of v for 
almost all x. This is proved by applying Schwartz's 
inequality to the inner integral and then using 
arguments similar to those used in discussing the 
function defined in (3.11). It therefore follows that 
if x is held fixed, the inner integral in (5.36) is 
just the Fourier transform of x(p, x; 0, 0). It then 
follows that Eq. (5.34) is valid for almost all (x, y). 

Since P(x, y) is square integrable and satisfies 
(5.33), it is a Hilbert-Schmidt kerne1.27 Furthermore, 
relation (5.34) shows that P(x, y) can only have 
the eigenvalues 0 or 1. Hilbert-Schmidt theory 
then says that all nonzero eigenvalues of P(x, y) are 
of finite multiplicity, and if <Pi(X), j = 0, .. , , R 
are the orthonormal set of eigenfunctions correspond­
ing to the eigenvalue one, then 

R 

P(x, y) = I: <Pi(X)<P~(y). (5.37) 
i-O 

n F. Riesz and B. Sz.-Nagy, Ref. 11, p. 242. 
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But Eq. (5.32) can only be satisfied if the eigenvalue 
one has multiplicity' one and hence R = O. This 
completes the proof that P(x, y) can be written in 
the form (5.28) and identifies ~o{x) as the eigen­
function of P(x, y) corresponding to the eigenvalue 
one. Finally, if we substitute Eq. (5.28) into Eq. 
(5.36) and make use of (5.6), we can obtain 

:Je(p, q; r, s) 

J -'P'(X-II) *( )eiro(X-8) ( ) IN = e ~o x - q «Jo x - Sax. (5.38) 

We now proceed to construct the unitary map 
L of (£ onto L'(RN ). For fixed (p, q), x(P', q'; p, q) 
is a function in ~, and we set 

LX(p', q'; p, q) = eiP'(X-q)~o(x - q). (5.39) 

Also for any "'(p', q') E ~1' we have 

L",(p', q') = L( t ak:Je(p', q'; Ph qk») 
k-l 

N 

= 2: akLX(p', q'i Pk, qk) 
.0-1 

N 

2: ake;P'·(X-q·)~o(x - q.). (5.40) 
i-I 

Let us verify that L is isometric on ~l' From 
(5.39) it follows that 

(L:Je(p', q'; p, q), L:Je(p', q'i r, s)} 

= J e-;p'(X-q)~~(x - q)e;r.(x-s)~o(x - s) dNx, (5.41) 

where the inner product is taken in L2(RN). If 
(5.38) and (5.41) are combined, there results 

(L:Je(p', q';p, q), L:Je(p', q'ir, s)} = :Je(p, q;r, s) 

= (X(P', q'; p, q), :Je(p', q';r, s».. (5.42) 

Because of the way in which the inner product is 
defined for elements in ~h it is readily seen that 
L is a linear map of ~I into L2(RN) which preserves 
inner products. The representation (5.7) of an 
element of ~1 is not unique. However, the isometry 
of L on ~1 shows that it maps two different rep­
resentations of the same element in ~I onto the 
same element in L2(RN), i.e., L is single-valued. 
Since ~1 is dense in ~, L can now be uniquely 
extended in standard fashion to a map of all of ~ 
into L2(RN) which preserves inner products.23 

A linear map which preserves inner products is 
one-to-one, and so to complete the proof that L is 
a unitary map of ~ onto L2(RN) , we must show 
that the image of ~ under L is all of L2(RN). How-

ever, the image of ~ under L is just the subspace 
spanned by the set of elements e'P'(X-q) «Jo(x - q) 
for all p, q, and by Lemma 3.3 this subspace is 
all of L2(RN). This completes the proof that L is 
a unitary map of ~ onto L2(RN). 

It is now a straightforward matter to determine 
the image under L of the family of operators Ufp, q] 
which we have defined on ~. If I(x) E L2(RN ), then 

LU[p, q]L-If(x) = eip·(:r.-q)j(x - q). (5.43) 

However, von Neumann's theorem asserts that the 
family of operators LUfp, q]L- 1 is irreducible, and 
hence the family of operators Ufp, q], defined on ~, 
is irreducible. The unitary map L is just the Schro.. 
dinger map of ~ onto L2(RN). 

This completes the reconstruction of the con­
tinuous representation starting from a given kernel 
function. We summarize these results in 

Theorem 5.1. Let :Je(p', q'; p, q) be a function 
which satisfies Eq. (5.3) and possesses properties 
1 through 4 of part A of this section. Then :Je 
uniquely determines a continuous representation of 
L2(RN). The fiducial vector ~o(x) is uniquely de­
termined up to a constant, complex multiple of 
absolute value one. Au irreducible representation 
of the family of operators Ufp, q] is uniquely de­
termined, and the corresponding OFS is uniquely 
determined up to a unitary equivalence. 

C. The Significance of the Inner Product in ~ 
In concluding this discussion about Aronszajn 

spaces and continuous representations, we want to 
emphasize the role played by the inner product. 
In the first place, the fact that each ~ is a subspace 
of L2(RN X RN) is nontrivial, because examples 
of Aronszajn spaces exist for which this is not the 
case. For example, lees 

:Je(p; p') = e-1("-,,')*. (5.44) 

It is not difficult to show that this is indeed a 
kernel function, but that there is no measure dp.(p) 
with which the idempotent character of :Je(p; p') can 
be expressed as 

(5.45) 

Thus the Aronszajn space corresponding to this 
kernel is not a subspace of L2(R) for any measure p.. 

In the second place, there is an intimate relation­
ship between the measure [dNpj(211')tN][dNqj(211')!N] 
and the irreducibility of the representation of the 

28 This is a special case of a class of functions studied by 
Aronszajn, Ref. 8, p. 152. 
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operators U [p, q] constructed on <£. For example 
let Eq. (5.3) be replaced by the relation 

J J :Je*(p", q" j p, q):Je(p", q" j p', q') 

dNp" dNq" 
X Ri (2'11')tN Ri (2'11')tN = :Je(p, qj p', q'), (5.46) 

where R is a positive integer. Then it can be shown 
by the same methods used in part B of this section, 
that the representation of U[p, q], given by (5.18) 
and (5.19), is no longer irreducible. In fact a unitary 
map of ~ onto the R-fold direct sum of L2(RN) 
with itself can be constructed using the techniques 
of part B, such that the image of U[p, q] is completely 
reduced by each of the R subspaces, L2(RN). The 
kernel itself may be decomposed as 

R 

:Je(p', q'j p, q) = R-1 L: :Je;(p', q'j p, q) (5.47) 
i-I 

in which each :Je; is generated by an irreducible 
representation of U[p, q] and the corresponding ([; 
are orthogonal subspaces of L2(RN X RN)' These 
kernels arose in connection with the analysis in nI, 
Sec. 2. 

More generally, however, most kernels based on 
reducible representations of the operator family 
U[p, q] admit no expression of the inner product 
with the aid of one measure solely on RN X RN 
since a decomposition in the manner of (5.47) is 
not into orthogonal subspaces of L2(RN X RN)' 
Such a decomposition may include a finite number 
of terms as in (5.47) or may be of the form 

:Je(p', q'j p, q) = I :Jea(p', q'j p, q) dO'(a), 
(5.48) 

1 = J dO'(a), 

where each :Jea corresponds to an irreducible rep­
resentation, and where :Jea is a O'-measurable func­
tion, 0' being a nondecreasing real function of 
bounded variation. In either case, the properties 
of such kernels may be found from a knowledge 
of their irreducible components. 

resentation ([. In this section we examine the images 
under 0 of all bounded, linear operators mapping 
.\) into itself. Let '11 E .\) and let B be a. bounded, 
linear operator on .\). Then, making use of (3.19), 

OBW = (<I>[p, q), BW) 

= II (<I>[p, q], B<I>[r, s])(<I>[r, s], '11) dp.(r, s) 

= ff B(p, qj r, s)1/I(r, s) dp.(r, s). (6.1) 

Thus the image of B is the integral operator whose 
kernel is 

B(P, qj r, s) = (<I>[p, q), B<I>[r, s]). (6.2) 

Since every bounded, linear operator on ([ is the 
image of a bounded, linear operator on .\), we can 
conclude that every bounded, linear operator on ~ 
can be represented by an integral operator of the 
form (6.2). Notice that the kernel corresponding 
to the unit operator is just :Je(p, qj r, s). 

We state without proof a number of conditions 
satisfied by the kernel (6.2). In what follows <pep, q) 
and 1/I(P, q) are arbitrary elements of ~. 

1. B(p, qj r, s) is a continuous, bounded function. 
It is continuous in (p, q) uniformly with respect to 
(r, s), and it is continuous in (r, s) uniformly with 
respect to (p, q). 

2. For fixed (p, q), B(p, qj r, s) is square integrable 
with respect to dp.(r, s), and for fixed (r, s) it is 
square integrable with respect to dp.(p, q). 

3. The functions 

A(p, q) == If B(p, q; r, s)<p(r, s) dp.(r, s) (6.3) 

and 

x*(r, s) == II 1/I*(P, q)B(p, qj r, s) dp.(p, q) (6.4) 

are both square integrable, and 

II 1/I*(P, q)A(P, q) dp.(p, q) 

= JI x*(r, s)<p(r, s) dp.(r, s). (6.5) 

6. THE REPRESENTATION OF LINEAR OPERATORS Furthermore, there is a constant IIBII, such that 
ON (£ 

A. Bounded Operators on ~ 

In Eq. (4.1) we defined the linear map 0, which 
maps the Hilbert space .\) onto its continuous rep-

If! 1/I*(P, q)A(P, q) dp.(p, q)l 

::::; liB II '//1/1//. 'I/<Pl/ •• (6.6) 

4. The kernel for B obeys 
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11 B(p, qi t, u)x(t, Ui r, s) dlL(t, u) 

= If x(p, qi t, u)B(t, Ui r, s) dlL(t, u) 

= B(p, qi r, s). (6.7) 

5. If Bt is the adjoint transformation of B, its 
kernel is 

Bt(p, qi r, s) = B(r, Si p, q)*. (6.8) 

If B is self-adjoint (Bt = B), then 

B(p, qi r, s) = B(r, Si p, q)*. (6.9) 

6. If A and B are bounded, linear operator on ~, 
then so is AB, and their respective kernels satisfy 

Here Xa is the ath component of x. Then 

E •• (P, qi r, s) = J e-,p'(X-q)<p~(x - q) 

where 

X e,r.(x-s)<po(x - S)O(Xa - xa) dNx, 

O(x) = {I, 
0, 

x ~ 0, 

x < o. 

(6.16) 

(6.17) 

c. Let F •• be the projection operator defined as 
follows: If J(k) is the Fourier transform of j(x), then 

F •• f(x) = !.i.m. (211"r1N 

X f O(Xa - ka)J( _k)e,k'X dNk, (6.18) 

(AB)(P, qi r, s) 

= If A(p, qit,u)B(t,Ui r , s)dlL(t,u). 

where ka is the ath component of k. Then 

(6.10) F •• (P, qi r, s) = f e-ik.q<,O~(k + p) 

7. If A is unitary, then 

If A(p, qi t, u)A(r, Si t, u)* dlL(t, u) 

= x(p, qi r, s), 

II A(t, Ui p, q)* A(t, Ui r, s) dlL(t, u) 

= x(p, q; r, s). 

8. If tr A exists, it is given by 

(6. 11 a) 

(6.11b) 

tr A = II A(p, q; p, q) dlL(P, q). (6.12) 

We now list several examples of bounded operators. 
In the first three cases we choose ~ as L2(RN). 

a. Let T be the Fourier transform, 

Then if <Po(x) represents the fiducial vector and 
<'oo(y) its Fourier Transform, 

T(p, q; r, s) 

I -ip'(x-q) *( q) i,,·s_ ( + r) dN 
= e <p 0 X - e <Po x x. (6.14) 

Since T is unitary, T(p, q; r, s) satisfies condition 7. 
b. Let E •• be the projection operator defined as 

follows: 

E •• f(x) = {f(X) , 
0, 

(6.15) 

X eik'S<,Oo(k + r)O(Xa + ka) dNk. (6.19) 

d. In Sec. 3 we defined operators of the form 

B = II bet, u)cp[t, u]cpt[t, u] dlL(t, u), (6.20) 

where bet, u) is a bounded, measurable function. 
Then 

B(p, q; r, s) = II x(p, q; t, u)b(t, u) 

X x(t, u; r, s) dlL(t, u). (6.21) 

e. Weye9 introduced a class of operators of the 
form 

F = II U[t, u]f(t, u) dlL(t, u). (6.22) 

If f(t, u) is a square integrable function, and F is 
defined by its matrix elements, as is the analogous 
operator (6.20), then F is a bounded, linear operator 
for which 

F(p, q; r, s) = II eit
•
s 

X x(p, q; r + t, s + u)f(t, u) dlL(t, u). (6.23) 

We now show that every operator kernel function 
satisfying conditions 2, 3, and 4 defines a bounded, 
linear operator on <i£, and at the same time we 
construct the image under a-I of this operator in ~. 
Let B(p, q; r, s) satisfy conditions 2-4, and consider 

'9 H. Weyl, Ref. 12, p. 274. 
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the formal, operator-valued (on 4» integral 

B = 1111 iJ>[p, q]iJ>t[r, s1 

X B(p, q; r, s) d",(p, q) d",(r, s). (6.24) 

We define B as that operator on 4) which maps 
the vector w onto 

B'Ir = II oJ>[P, q](B~)(P, q) d",(p, q), (6.25) 

where 

(B~)(P, q) = if B(p, q; r} s)~(r, s) d",(r, s). (6.26) 

Since fCr, s) = (oJ>[r, sl, w) is an element of Iil, 
it follows from conditions 2 and 3 that (B~)(p, q) 
is square integrable. Then according to the results 
of Sec. 3, the integral (6.25) is a well-defined vector 
in 4). The linearity of the operator defined in 
(6.24)-(6.26) follows directly from the relation 

(oJ>[P, q], aW + A) = a(oJ>[p, q], w) + (iJ>[p, q], A), 
(6.27) 

for all W, A E 4), and all complex numbers a, and 
the fact that the integral is a linear operation. 
Furthermore, condition 3 shows that B is a bounded 
operator. Finally, we construct the kernel function 
of the operator on Iil corresponding to B under the 
map C. With the aid of condition 4, we get 

CBC-1 = (oJ>[P, q], BoJ>[r, sJ) = B(p, q; r, s). (6.28) 

This completes the demonstration that any operator 
kernel function satisfying conditions 2-4 is the image 
under C of a bounded, linear operator on 4). The 
operator B on 4) corresponding to the kernel func­
tion B(p, q; r, s) under C- 1 is given by (6.24). 

It should be noticed that the unit operator has 
the representation 

I = 1111 iJ>[p, q]iJ>t[r, s] 

X x(p, q; r, s) d",(p, q) d",(r, s), (6.29) 

which in view of (3.19) and the definition of X is 
equivalent to (3.23). 

B. Unbounded Operators on Iil 

If 0 is an unbounded, linear operator mapping 
4) into itself, then considerably less can be said 
about its image in ~. In particular, it could happen 
that none of the vectors iJ>[p, ql is in the domain 
of 0, in which case a representation of the image of 0 
as an integral operator on ~, as defined in part A, 
would be impossible. 

However, in the important case of self·adjoint 
operators more can be said. It is well known that 
corresponding to each self-adjoint operator 0 defined 
on 4), there is a family of projection operators on 
4), lEA}, - co < A < co, called a resolution of the 
identity, which satisfies the relation30 

(6.30) 

In certain applications, it is the resolution of the 
identity which is of most interest j this is the case 
in the quantum mechanical theory of measurements, 
for example.31 Since all projections are bounded 
operators, the results of part A can be applied to the 
projections comprising a resolution of the identity. 

Two important resolutions of the identity are 
given in examples band C.

32 The two families of 
projections, {EA«l of example band /FAJ of ex­
ample c, - co < A", < co are the resolutions of the 
identity of the operators Qa and P "" respectively, 
defined in (4.9). 

Finally, in those cases where the set ~ (all vectors 
of the form oJ>[p, q]) is included in the domain, ~o, 
of the unbounded operator 0, it is sometimes possible 
to represent 0 as an integral operator on ~. This is 
always the case when 0 is self-adjoint and ~ C ~o. 
For then 

O(p, q; r, s) = (oJ>[p, q], OoJ>[r, s]) 

= (OoJ>[p, q], iJ>[r, sJ). (6.31) 

Again the results of Sec. 3 show that O(p, q; r, s) 
is a continuous, square integrable function of (p, q) 
for fixed Cr, s) [this is also true with (p, q) and Cr, s) 
interchanged]. Then from Eq. (3.16), if ~(p, q) E ~, 

II O(p, q;r, s)~(r, s) d",(r, s) 

= I (OoJ>[p, q], iJ>[r, s])(oJ>[t, s], w) d",(r, s) 

= (OoJ>[p, q], w). (6.32) 

If w E ~o, then 

(0iJ>[p, q], w) = (oJ>[P, q], OW). (6.33) 

In other words O(p, q; r, s) maps the representative 
of \}i in ~ onto the representative of O\}i in ~. 

However, if \}i EE ~o then the right-hand side of 
(6.32) is not a function in ~. 

30 F. Riesz and B. Sz.-Nagy, Ref. 11. 
31 J. von Neumann, Mathematical Foundationa of Quantum 

M echanica (Princeton University Press, Princeton, New 
Jersey, 1955), Chap. III. 

32 J. von Neumann, Ref. 31, pp. 128-136. 
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Two important examples are the operators Q", 
and P "" In Sec. 4 we showed that if cf>o E 1)0", 
then ~ C 1)(1,,; and also if cf>o E 1)Pa1 then ~ C 1)p". 

In a straightforward fashion one can show that if 

Q",(P, q; r, s) = J x"e-iP'(X-q
) 

x IP~(x - q)e,r.(x-s)IPo(x - s) dNx, 

and similarly if cf>o E ~Pa' then 

P "'(P' q; r, s) 

= - J kae-'k·qcP~(k + p)e,k··cPo(k + r) dNk. 

(6.34) 

(6.35) 

In concluding Sec. 6, it should be pointed out 
that the fact that bounded operators can be rep­
resented by kernel functions on ~ is typical of 
Aronszajn spaces. However, we were able to say 
more about the structure of these kernels in the 
case of continuous representations than can be said 
in the case of a general Aronszajn space. 
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Among rotation groups Rn, the cases n = 4 and 8 are unique in having two inequivalent n X n 
representations. Mathematically this is related to the uniqueness of quaternions and octonions; 
physically these groups seem to underlie the real and charge-space symmetries of elementary particles. 
An attempt is made to interpret this fact by assuming a lack of inherent geometrical preference 
between Fermi-Dirac and Bose-Einstein statistics. Corollaries are the identity of real and charge­
space statistics and the complete disjointness of real and charge-space coordinates. 

INTRODUCTION 

AMONG n-dimensional rotation groups Rn the 
cases n = 4 and n = 8 are specially distinguished: 

(i) They have two inequivalent representations 
of dimension n, all other cases having only one; 

(ii) They seem to determine the symmetries of 
elementary particles, R, for real space (with one 
imaginary axis), Rs for charge space.1 

The following note seeks to relate (i) and (ii) in 
terms of the simultaneous possibility of Bose­
Einstein and Fermi-Dirac statistics. As corollaries: 

(a) real and charge-space statistics are completely 
correlated; 

(b) real and charge-space coordinates are com­
pletely disjoint; 

(c) five- and six-dimensional treatments of Dirac 
and Maxwell equations appear as formalities without 
special physical significance. 

1. ALGEBRAIC RELATIONS 

For any dimension, the regular representation of 
RIO is given by the matrices ~AB = -i(lAB - 1u ), 

A, B = 0, 1, ... , n - 1; here lAB is an n X n 

matrix with a unit entry in the A th row and Bth 
column, zeros elsewhere. Then 

~AB~CD = 5Ac1BD + 5BD1Ac 

- 5AD1nC - 5Bc 1AD , (1) 

so that ~AB and ~CD commute if they have no com­
mon indices; and ~!B = 1AA + 1BB , whence the 
eigenvalues of ~AB are +1, -1, (0),,-2. 

We obtain an inequivalent n X n representation 
of R" if it is possible to form linear combinations 
of the ~AB that behave like corresponding Dirac 
matrices 1'04 (A = 1 '" n - 1): namely, 

1'! = I, 
(2) 

A ~B. 

1 Arguments favoring Rs for charge space are presented, 
for example, by D. C. Peaslee, J. Math. Phys. 4, 910 (1963). 

The independent representation is then 

A,B ~O, (3) 

The 0' AB satisfy the same commutation rules as 
the ~AB and hence represent RIO; but their eigenvalue 
distribution is (!)i", (-!)in, so they are inequivalent 
to ~AB. This incidentally shows that n must be even. 

The relation between the eigenvalues of 1'04 and 
~AB requires the linear combination to have the form 

(4) 

where the coefficients gABC are totally antisymmetric, 
run only over the values A, B, C ~ 0, and have 
magnitude unity or zero. The factor of i in Eq. (4) 
is to correct for counting each ~BC twice in the usual 
convention for summing over repeated indices. For 
each choice of A, B ~ 0 there must be just one 
nonvanishing gABC' Then each 1'04 will consist of in 
different ~AB with no common indices, so the eigen­
value distribution (_1)"/2, (+ 1)"/2 for l' A is assured. 

Consider the expression 

(5) 

with summation over A on the left-hand side, and 
"tBCDE a totally antisymmetric function of its indices. 
The conditions of antisymmetry and uniqueness 
already imposed on the gABC imply the form on 
the right-hand side of Eq. (5); it will not be necessary 
for present purposes to determine "tBCDB any more 
closely, although in fact it vanishes identically when 
n = 4, 8 (in the latter case the gABC become just 
the eABC of Ref. O. Now 

1'A1'B = 19AcDgBEp~cD~EP 

± !{gACD~CD~OB + gBEp~oA~Bpl + 2:Q.4~OB 
gAcDgBcp1DP ± igABc 2:oc + lAB + CiAB100; (6) 
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but by insertion of Eq. (5) this becomes 

I'AI'B = -(JABC(JCDFInF - 2(IBA ) + lAB 

+ oAB I FF (1 - OOF) - 'YABDFInF ± i(JABC'1;oC 

+ lAB + OAB100 = OAB ± i(JABC'1;OC + 2i'1;AB' (7) 

This last form establishes both parts of Eq. (2). 
We now examine whether any (JABC can in fact 

satisfy the requirements imposed. Suppose the set 
to start with the members 

(8) 

which can be assumed without loss of generality. 
There are !en - 2) such terms. The additional 
nonvanishing (JABC with A = 2 must have B, C > 3, 
and likewise for A = 3. For both A = 2 and A = 3 
there are !en - 2) - 1 new, nonvanishing (JABC; 

for A = 4, 5 there are !en - 2) - 3 terms each; 
for A = 2m, 2m + 1, there are !en - 2) - (2m - 1) 
terms each. This sequence clearly stops in general 
before the ultimate limit of 2m + 1 = n - 1; in fact, 
there is zero contribution when (2m + 1) = !em - 2), 
or 

n = 4m (9) 

where m is a positive integer. The total number 
of independent (JABC collected up to the cutoff of 
Eq. (9) is (2m -IH(n - 2) - 2(m - I? = 2m

2 
- 1. 

If one regards the (JABC as the BC elements of square 
matrices G A, then there is clearly a one-to-one 
correspondence between I' A and G A; since there are 
only n - 1 quantities I' A, the same is true of (JABC' 

Thus, 

2m2 - 1 = n - 1 = 4m - 1, m = 0, 2. (10) 

The only nonempty case therefore appears to be 
n = 4m = 8. A special degenerate case can be 
added, however, by considering (JABC, (JBCA, (JCAB as 
independent, so that 

3(2m2 - 1) = 4m - 1, m = -i, 1, (11) 

and n = 4. From the present point of view, qua­
ternions appear as degenerate (hence associative) 
octonions. 2 

Of course it has not been shown that constructions 
of the type in Eq. (4) exhaust the possibilities of 
finding inequivalent n X n representations of R". 
At this point we recall the group theory resule that 

2 For n = 4 the corresponding Dirac rA(A = 0, 1, 2, 3) 
must be constructed by recognizing that the usual spin 
matrices d and e are given by 

erA = ! UABC ~BC + ~OA, PA = I gABC ~BC - ~OA' 
with A = 1,2,3. 

a E.g., F. D. Murnaghan, The Theory of Group Repre-
8entationa (Johns Hopkins Press, Baltimore, Maryland, 1938). 

this situation exists only for n = 4, 8; since Eqs. (10) 
and (11) yield the same result, Eq. (4) must be 
perfectly general. 

The connection of the above with conventional 
definitions of octonions and quaternions4 is imme­
diate. The matrices (il' A) are a satisfactory rep­
resentation of octonions (A = 1. ... 7) and qua­
ternions (A = 1 '" 3); the coefficients (JABC can 
be read immediately from the definition 

(12) 

where fA is an octonion or quaternion. 

2. GEOMETRIC INTERPRETATION 

For any space of n orthogonal axes the basic 
geometrical object is the coordinatelike vector XA, 

A = 0 ... , n - 1; the elementary transformation 
is the rotation of a vector, specified by the n X n 
matrices '1;AB' In general, objects that transform 
under the (jAB are called half vectors. For the special 
cases n = 4 and 8, however, a different interpretation 
is possible. Since the (jAB are of the right dimensions 
to apply to a vector, one can say that they generate a 
vector transformation XA ~ xl that is not rotation 
but "half rotation". If I'!C is the BC element of the 
matrix I' A, then the bilinear forma 

(13) 

behaves under (jAB as the vector form XA does under 
'1;AB' The coordinates YB and Xc are taken as real; 
complex conjugation of one member is required for 
operation of the (jAB. The transformation of Eq. (13) 
under '1;AB is singular. We take now the point of 
view that all transforming objects x, yare vectors, 
but that there exist two inequivalent rotation op­
erators, '1;AB for linear and (jAB for bilinear forms. 
Inequivalence means that their roles cannot be 
interchanged. 

Consider now the transformation of a wavefunc­
tion tpABC ••• (x). The intrinsic geometrical prop­
erties of the wavefunction are specified by the 
indices A, B, ... ; in fact, the indices cannot have 
any other meaning than geometrical, if the properties 
of the particle all reside in one or another of several 
"spaces". The indices on tp thus play the same role 
as those on the coordinates XA, the basic wave­
function in n-dimensional space being tpA' To pre­
serve the point of view in the preceding paragraph, 
one may say that for n = 4 and n = 8 there exist 
two inequivalent operations of a rotational character, 

• L. E. Dickson, Ann. Math. 20, 155 (1918). 
6 for n = 8 the role of ro is filled by the quantity 100 -

LF,.O IFF; see Refs. 4 and 1, in which latter ro is called U. 
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specified by 2:AB and (TAB, to apply to f{)A' Under 
2:AB the f{)A itself transforms like an elementary 
n-vector; under (TAB the bilinear form r!cf{)~cpc = 
(cp + r A cp) transforms in this way. Since application 
of (TAB to the linear or 2:.1B to the bilinear form 
yields geometrical nonsense, we may classify all 
our wavefunctions into two groups: the CPA subject 
only to 2:AB, and the 1/;.1 subject only to (TAB. This 
classification is obviously in one-to-one correspond­
ence with what we ordinarily call the statistics of 
the wavefunction: Any number of identical CPA can 
be created or destroyed (Bose-Einstein statistics); 
but the 1/; A must always come in creation-destruction 
pairs6 (r r .11/;), so that no more than one of any 
particular variety can exist (Fermi-Dirac statistics). 
The possibility for both types of statistics to exist 
without some geometrical preference for one or the 
other-such as a basic representation of smaller 
dimensions-is a unique feature of spaces with n = 4 
or 8 axes. 

Reversing the order of the argument, one may 
postulate the existence of both commutative and 
anticommutative statistics, and the lack of any 
distinguishing preference inherent in the geometry 
of the embedding space. Then n = 4 or 8; and as 
these values are observed in practice, one may 
suspect the correctness of the postulate. 

8 The appearance of 'Yo in if; == if;t 'Yo for real space is 
directly associated with the metric requiring the 0 axis to 
be pure imaginary; no need is yet apparent for a charge-space 
analog. 

For real coordinate space these arguments simply 
reflect the well-known correlation of spin and 
statistics; it strengthens our conclusion to note 
that the correlation can be proved only with fully 
relativistic wavefunctions (n = 4) and not with 
their nonrelativistic approximations (n = 3). We 
have tacitly excluded the indefinite metric, which 
is the only way presently known to avoid the 
spin-statistics correlation. 

The same arguments carryover immediately to 
charge space: in the absence of an indefinite metric, 
the correlation of (TAB with F-D and 2:AB with 
B-E statistics. This has been called the "correlation 
between real and charge-space statistics" and earlier 
references are given in Ref. 1; it now appears that 
"identity" would be a better word than "correlation" 
in this phrase. 

It is interesting to note that this identity precludes 
the possibility that real and charge space are two 
subsections of one manifold; for this manifold must 
then be Rn with n > 8, and the basic postulate 
of nonpreference between B-E and F-D statistics 
would be violated. If charge space had only n = 4, 
then charge and real space together might compose 
an acceptable 8-dimensional manifold. It is fortunate 
that nature does not present us with this problem, 
although it is not obvious why. 

It is known that the Maxwell and Dirac equations 
can be displayed in six-dimensional form; this 
appears to have no special significance in the light 
of the arguments above. 
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Lower Bounds on the Lehmann Weights in Spin-Zero Meson Theory 
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(Received 14 January 1964) 

It is shown within the framework of conventional spin-zero meson theory that, if all renormalizations 
are assumed finite, the Lehmann weights of the fermion and meson Green's functions cannot decrease 
arbitrarily rapidly as a function of energy. 

I N a recent publication1 an attempt has been 
made to free quantum electrodynamics from the 

divergences which have long been its most serious 
flaw. The central feature of this work was the self­
consistent calculation of the asymptotic behavior of 
the Lehmann weight corresponding to the electron 
Green's function. Since it is not at all clear at 
present whether those features peculiar to electro­
dynamics will preclude a generalization of this tech­
nique to the more interesting domain of strong 
interactions, it is tempting to speculate upon the 
possibilities inherent to such an approach. 

One such effort in this direction has been made 
by Acharya and Han2 who calculated the pion­
nucleon coupling constant from the second-order 
Lehmann weight of the nucleon Green's function 
and the experimentally observed pion-nucleon mass 
ratio. Crucial to this calculation was the condition 
used by Johnson et al. that the fermion bare mass 
be zero. Since there has been no theoretical support 
to date for such an extrapolation to the realm of 
strong interactions, it is well to focus attention here 
on some general conditions which must be satisfied 
in possible future theories. 

As in Ref. 1, we take the view that the divergence 
difficulties of quantum field theory are the result 
of an inadequate perturbation theory rather than 
the manifestation of any intrinsic properties of the 
full theory. It is shown, nonetheless, using tech­
niques developed by Lehmann, a that in scalar and 
pseudoscalar meson theory the Lehmann weights 
must asymptotically possess a lower bound. 

We shall consider the system described by the 
Lagrangian 4. 

.c = if-la,,1/; - molf1/; + golf(l, 'Ys)1/;cp 

+ !(cpa"cp" - cp"a"cp) - !.u~cp2 + jcp"cp" - tX2cp., (1) 

1 K. Johnson, M. Baker, and R. S. Willey, Phys. Rev. 
Letters 11, 518 (1963). 

2 R. Acharya and M. Y. Han (preprint). 
8 H. Lehmann, Nuovo Cimento 11, 342 (1954). 
4 We use a representation of the Dirac algebra in which 'Yo 

is antisymmetric and 'Y 10 symmetric. 

where we. have ignored inessential complications 
which can be introduced in the form of internal 
kinematical degrees of freedom. The notation (1, 'Y5) 
has been introduced in the meson-nucleon inter­
action term to permit the simultaneous considera­
tion of the scalar and pseudoscalar cases. For com­
plete generality we have included a direct meson­
meson interaction which appears in the Lagrangian 
with a nonpositive coefficient. That such a condition 
on the sign of the cp 4. term is necessary to ensure the 
existence of a ground state can be easily demon­
strated by a straightforward application of tech­
niques used by Baym5 to establish the inconsistency 
of the cubic boson interaction. Finally, we might 
remark that, while for a scalar cp it may be possible 
to include a cpa interaction, the reader can readily 
verify that its inclusion modifies none of our con­
clusions. 

The field equations implied by (1) are 

['Y" t a" + mo - go(l, 'Y5)CP(X) ]1/;(X) = 0, 

(_a2 + {J~)cp(x) = golf(1,'Y5)1/; - X2cp3. 

We define the meson Green's function by 

g(x - x') = i(OI (cp(x)cp(x'»)+ 10) - i(OI cp(O) 10)2, 

which by the work of Lehmann has the repre­
sentation 

r>( - ') - J ~ 'p( .. - .. ') 1'" B(K) di v x x - (2)4 e 2 + 2 ., 
~ 0 P K - ~E 

where B(K) is a positive-definite function. Similarly 
the fermion Green's function 

G(x - x') = iE(X - x')(OI (1/;(x)lf(x'»)+ \0) 

can be written 

I G. Baym, Phys. Rev. 117, 886 (1960); similar remarks 
concerning the </>4 interaction term have been made by A. 
Klein, "Proceedings of Seminar on Unified Theories of 
Elementary Particles," University of Rochester, July 1963. 
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The positive-definite property of the Hilbert space 
here also guarantees the positive-definit.e character 
of A+C,,) and A-C"). In pion-nucleon theory, A",eK) 
and BC,,) have the form 

A+e,,) = Z20(" - m) + O+(K - m - #L)A~(K), 

A_(,,) = O+(K - m - #L)A_(,,), 

Be,,) = ZaO(,,2 - 1'2) + o+(l - 9#L~B'("), 

where Z2 and Za, the wavefunction renormalization 
constants of the fermion and boson fields, satisfy 
the conditions 

It is perhaps well to mention here that the so-called 
broken-symmetry theories will admit a Lehmann 
representation so long as they do not break manifest 
Lorentz invariance. 

It will be more convenient to introduce the cor­
responding representations for the commutator and 
anti commutator of two field operators. Thus one has 

(01 [cpex) , cp(x')] lO) = 211" J (:~4 eiP(%-z')E(P°) 

X 10'" O(p2 + l)B(,,) dl, (2) 

and 

(01 {"t-(x), "t-+(x')J /0) 

= 211" J (:~4 e;P(z-z')E(P°) 10'" d" O(p2 + ,(2) 

X [C" - W)A+(,,) - (" + 'Yp)A-C")]~, 
where ~ = 'Yo and E(pO) = pOI/pOI. The equal-time 
commutation relations 

[cp(x) , 4>(x')J = io(x - x'), 

{"t-(x), "t-+(x')} = o(x - x'), 

imply the familiar sum rules on the Lehmann weights 

10'" d,,[A+(,,) + A_C,,)] = 1, 

ED dlBC,,) = 1. 

Similarly, the use of the field equations in con­
junction with Eq. (2) yields6 

• Equation (3a) has been previously considered by J. W. 
Moffat, Nuel. Phys. 14, 682 (1960). He did not, however, 
determine the sign of the meson-meson coupling constant as 
done above, and therefore found p.OI = "" for }.2 < O. 

mo = 10''' ,,[A+(K) - A_C,,)] d" + go(OI cp(O) /0). (3b) 

For pseudoscalar cp, the last term in C3b) vanishes 
to yield a more familiar result. Similarly, in the 
absence of a direct meson-meson interaction, (3a) 
leads to the usual sum rule for the boson bare mass. 
Since by assumption f.!~ is finite, it follows from the 
nonfinite character of (01 cp2(0) /0) that f~ iB(,,) di 
cannot exist for A ;c O. Because the boson wave­
function renormalization is finite, f; Be,,) dl exists, 
and one concludes 

J.'" ,,2B(,,) dl = ex> , 

A' 

where A is an arbitrary mass parameter. 
Let us now consider the result of a second appli­

cation of the field equations to the anti commutator. 
Thus 

{Ol {(W + mo)"t-(x), (W + mo)"t-+(x)} 10)1",0 • .". 

= o(x - x') 10
00 

[(" - mo)2 A+C,,) 

+ C" + mol A_(,,)] d" 

= g~oCx - x')(OI cp2(0) 10), 

and we conclude by previous arguments 

f" l[A+C,,) + A_(,,)] d" = ex>. 

It is perhaps worth mentioning here that in some 
respects the assumptions which we have made in 
this paper are too stringent. For instance, if one 
takes the meson-meson interaction term to be 

which corresponds in fact to an infinite mass re­
normalization, then Eq. (3a) becomes 

On the other hand, one can still show by the tech­
niques used here that 

f'" ,,~B(,,) d,,2 = ex> 

A' 

without any reference to the sign of A2. 
For the meson field, a lower bound on the Leh­

mann weight has already been obtained for A :;& O. 
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Thus we can now restrict our subsequent considera­
tions to the exceptional case A = O. One has in this 
instance 

~ (01 [(_a2 + IL~)I/>(x), (_a2 + 1L~)4>(X')] 10) 
t 

= g~(OI [~(1, 'Y5)~' f a:ol ~(1, 'Y5)~ ] 10). (4) 

For XO = xO' one can express the right-hand side 
of Eq. (4) with the aid of the equations of motion 
and the canonical commutation relations as 

-g~5(x - x/)(012m~(x)(0, 1)~(x) 

+ ~(x)'YP(1, 1) ~(x) 10). 

Upon expanding this highly singular function on 
the light cone and inserting the result into (4), one 
obtains 

4 
1'0 = 

X [5(x2
) + less singular terms]. (5) 

The right-hand side of (5) is positive-definite and 
allows one to conclude as before 

f'" K4B(K) dl = co. 
A' 

In summary then we have shown in conventional 
spin-zero meson theory that, if all renormalizations 
are finite, 

i'" l[A+(K) + A_(K)] dK = co, 

f'" iB(K) dl = co, 
A' 

and the stronger statement 

when there exists a direct meson-meson coupling. 
There are several views which one can take con­
cerning these results among which we might mention 
the following. 

(i) The straightforward application of the field 
equations and commutation relations used here is 
not adequate to deal with the highly singular opera­
tor products which we have encountered. This point 
has been discussed in quantum electrodynamics 
where the problems associated with gauge invariance 
suggest some techniques for defining these operators. 

(ii) The basic couplings to the fundamental spinor 
fields do not involve spin-zero particles. While this 
view might enable one to deny the existence of lower 
bounds such as have been derived here, the necessity 
of introducing couplings to particles of higher spin 
would introduce considerable difficulties. 

(iii) The renormalizations in conventional meson 
theory are not all finite. This view is, of course, at 
present unassailable though hardly attractive. 

(iv) The requirement that the Hilbert space have 
a positive-definite metric should be given up. The 
introduction of an indefinite metric could con­
ceivably make (011/>2(0) 10) finite and thus invalidate 
the bounds derived here. 

(v) Finally, one can accept the bounds derived 
here at face value and require that they be satisfied 
in future theories which attempt to calculate the 
asymptotic Lehmann weight. 
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The present note generalizes a transformation due to Takahashi. The Takahashi transformation 
introduces a Hamiltonian formalism in the presence of a single linear supplementary condition 
imposed on n + 1 coordinates. The Takahashi transformation is generalized to treat the case when 
there are N independent linear supplementary conditions imposed on the differentials of n coordi­
nates. It is shown that the generalized transformation leads to true coordinates when the coefficients 
of the differentials are coordinate-independent; otherwise the transformation generally leads to quasico­
ordinates. More general transformations are discussed, the relation with the method of Lagrange mlllti­
pliers is established, and some problems which arise in connection with quantization are pointed out. 

1. INTRODUCTION 

T AKAHASHI has developed a technique for 
introducing a Hamiltonian formalism when 

there is a single linear supplementary condition 
imposed on n + 1 coordinates. l In the present note, 
the more general case when there are N independent 
linear supplementary conditions on the differentials 
of n coordinates is discussed. The analysis of a 
well-known problem in Riemannian geometry is 
utilized to generalize Takahashi's transformation. 
In particular, it is shown that the generalized trans­
formation can be applied to the coordinates only in 
the case that the coefficients in the supplementary 
conditions are not functions of the coordinates on 
a hypersurface; i.e., the supplementary conditions 
may be represented by N linear conditions on the 
coordinates as well as their differentials. When the 
coefficients in the supplementary conditions are func­
tions of the coordinates, the generalized transforma­
tion generally leads to the introduction of quasi­
coordinates.2 The equivalence of the present ap­
proach to the method of Lagrange multipliers is 
pointed out. 

The case when the supplementary conditions 
involve the momenta as well as the coordinates is 
also briefly discussed. The calculational techniques 
are illustrated by simple examples. 

The calculations are all carried out within the 
framework of classical dynamics. The problem of 
quantization is then discussed in a final section. 

II. CONSTRAINTS 

A. Algebraic Coordinate Conditions 

Consider a real n-dimensional Euclidean space the 
.. Supported in part by the National Acienf Foundation. 
1 Y. Takahashi, Physics Letters 1, 278 (196 ). 
t E. T. Whittaker, Analytical Dynamics (C mbridge Uni­

versity Press, Cambridge, England, 1937), p. 1. 

points of which are specified by Cartesian coordinates 
q", (fJ. = 1, ... , n). 

The coordinate q" may represent a generalized 
coordinate of a classical system with a finite number 
of degrees of freedom or it may represent a field 
variable in some classical field theory. In the latter 
case, however, the discussion assumes that the field 
variable refers to a fixed value of its argument 
unless it is being considered in relation to a varia­
tional principle. Let there be N independent dif­
ferential supplementary conditions of the form 

dCR = aR.dq = a:dq" = 0 (R = 1, .,. ,N), (1) 

where aR and dq are vectors in the n-dimensional 
space with Cartesian components a~ and dq", re­
spectively; a R • dq represents a Euclidean scalar 
product; unless otherwise specified, repeated indices 
above and hereafter are to be summed over; and 
the coefficients a~ are presumed to be real algebraic 
functions of the q's. Since the dCR are all independent 
functions of dq for a given n-tuple q = (q\ ... , t), 
the vectors aR form a set of N linearly independent 
vectors. Thus the vectors aR span a local N-dimen­
sional Euclidean subspace at the point q. Eq. (1) 
states that the vectors dq lie in the local (n - N) 
dimensional Euclidean subspace orthogonal to the 
vectors aR

• 

When the coefficients a~(q) satisfy the integra­
bility conditions a:.> = a~,,,, where t,,, ;:: 8t/8q", 
Eqs. (1) are equivalent to the equations 

(R = 1, ... , N). (2) 

Each of the Eqs. (2) defines an (n - 1)-dimensional 
hypersurface and a~ = C~ are the n Cartesian 
components of the gradient for each hypersurface . 
Each point q is restricted to the (n - N)-dimensional 
hypersurface representing the intersection of the N 
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hypersurfaces defined by Eqs. (2) and its local 
tangent spaces are locally orthogonal to the vectors a R. 

Let B" denote the n-dimensional Euclidean sub­
space originally referred to; let BN denote the N­
dimensional locally Euclidean subspace spanned by 
the vectors aR

; and let B denote the (n - N)-dimen­
sional locally Euclidean subspace orthogonal to BN • 

Let 
(3) 

denote the contravariant components of the metric 
tensor in BN at a point q. Then 

(4) 

where gR8 represents the covariant components of 
the metric tensor and satisfies gR8g

8T = 8~, is the 
local projection operator which projects vectors in 
B" into 8. D". is a symmetric matrix with eigenvalues 
zero and one and hence may be diagonalized by a 
unitary transformation. All vectors in BN are eigen­
vectors of D". with eigenvalue zero. All vectors in 
B are eigenvectors of D ". with eigenvalue one. As a 
projection operator, D". is the null operator in BN 
and the unit operator in B. For convenience, we 
represent D". by means of an orthonormal basis in 8. 
Such an orthonormal basis may be constructed as 
follows. Define (n - N) vectors a, with Cartesian 
components a~ by the equations 

[i = 1, ... , (n - N)], (5) 

where E~'" '''''H'' ····H is a completely anti-symmetric 
Levi-Cevita density which is equal to unity whenever 

I-' < 1-'1 < '" < 1-',-1 < VI < ... < VN; 

and 

Hereafter it is to be understood that Greek indices 
run from 1 to n; capital Latin indices run from 
1 to N; and lower case Latin indices run from 1 to 
(n - N). Let d, denote the unit vectors formed 
from ai. From Eq. (5) it obviously follows that 

d,·d; = 8;; and d,·aR = O. (6) 

Thus the vectors d, form a suitable local orthonormal 
basis for B. 

At a point q on the hypersurface, each vector 
dq in 8 may be expressed as a linear superposition 
of the vectors d,. 

dq = d,dr/, 

d7]' = d,.dq = d,,,dq". 

(7) 

(8) 

The differentials d7]' form a set of (n - N) independ-

ent differentials in terms of which, each differential 
dq" is expressed through Eq. (7). It follows from 
Eqs. (6)-(7) that 

(9) 

where d7], = d7]', so that dr/'s represent the projec­
tions of an element of arclength in the hypersurface 
on to the tangent vectors d,. 

Equation (4) represents the generalization of Ta­
kahashi's Eq. (4).1 The vectors d. together with the 
vectors aR, yield an explicit representation of the 
unitary matrix diagonalizing D" •. In addition, Eqs. 
(7)-(8) represent the generalization of Takahashi's 
Eqs. (7) and (14).1 We now investigate the circum­
stances under which the differentials d7]' are the 
differentials of a permissible set of parameters for 
specifying the points q of the hypersurface; i.e., 
the circumstances under which Eq. (7) may be 
integrated to yield each q" as a function of n - N 
independent 7]"s. 

If the integrability conditions d •. ; = d;." where 
t .• == otlo7]', are satisfied, Eq. (7) may be integrated 
to yield q" = q"(7]\ ... 7],,-N). It is seen from Eq. 
(9), however, that the metric tensor is that for a 
flat space so that the hypersurface is isometric to a 
hyperplane. If the hypersurface is a hyperplane, 
the vectors aR must be constant along the hyper­
plane. Equations (2) may then be taken as rep­
resenting a family of hyperplanes of dimension 
(n - 1) each of which is orthogonal to the (n - N)­
dimensional hyperplane representing their inter­
section. The equations for the hyperplanes are given 
by a direct integration of Eqs. (1) resulting in N 
linear supplementary conditions on the coordinates. 

Thus we have 
"The variables 7]' defined in Eq. (8) are accept­

able parameters for the (n - N)-dimensional hyper­
surface if and only if the hypersurface is flat. Eqs. 
(2) may then be taken to represent a family of 
(n - I)-dimensional hyperplanes if the hypersurface 
is a hyperplane." 

In general, whether or not the vectors d. may be 
tangents to a family of orthogonal coordinate curves 
on the hypersurface will depend on the vectors a R 

which determine the hypersurface. In any case, 
as is well known, given Eqs. (2), one can always 
find an acceptable set of parameters for the hyper­
surface. The main feature of transformation equa­
tions such as Eqs. (7)-(8) is that none of the q" are 
given preferential treatment. Moreover, even if the 
hypersurface is not flat, Eqs. (8) represent a set 
of independ~nt differentials d7]' which may be con­
sidered as quasicoordinates.2 Such coordinates may 
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be used to obtain an independent set of Euler­
Lagrange equations as follows. 

For definiteness, consider the action integral 

8 = J dt L(q, q, t). (10) 

Utilizing Eq. (7), the general variation of 8 may 
be written in the form 

58 = J dJ[aL - ~ (aL)Ja~01/i ''l. at dt art 

+ ~ [aL "~5 i _ (aL a~' - L)5tJ} (11) dt art a, 1J all ,1J , 

where 5f = of + j5t is the total variation of f and 
a dot over a symbol denotes total time derivative. 
Since the 01J i are independent, the Euler-Lagrange 
equations are 

[aL _ ~ (aL)Ja~ = O. (12) 
aq~ dt art 

As discussed above, the transformation equations 
(7)-(8), using the orthonormal set ai, leads to quasi­
coordinates unless the vectors aR are constant along 
the hypersurface. The latter remark holds whether 
or not Eqs. (1) may be integrated to yield Eqs. (2). 
Obviously however, whenever Eqs. (2) obtain, one 
can always find sets of vectors ai (not necessarily 
orthonormal) which may be used to effect a trans­
formation to true coordinates. If the vectors ai are 
not orthogonal, then they must be coupled to a 
reciprocal set satisfying the condition that ai • a; = 0:. 
In any case, it is clear that Eqs. (12) will still 
represent the Euler-Lagrange equations for the qP. 

If Eq. (12) is multiplied on the right by ai. and 
summed over i, we get 

[aL _ ~ (aL)JD~' = 0, (13) 
at dt all 

where DP
' = D~. since as defined in Eq. (4), D~, 

is a Cartesian tensor. Thus, without even construct­
ing vectors ai, one can always write Eq. (13) by 
using Eq. (4). Equations (12) represent (n - N) 
equations· for n variables so that appropriate use 
must be made of Eqs. (1); but Eqs. (13) are n equa­
tions for n variables and may be used as they stand. 

Note that Eqs. (13) could also have been obtained 
directly using the method of Lagrange multipliers. 
For, upon multiplying each of Eqs. (1) by a multi­
plier XR and summing over R, one finds from the 
resulting Euler-Lagrange equations 

[aL d (aL)] Sp All = - - dt - UllSa . akP art 
(14) 

Thus either approach leads to the same Euler­
Lagrange equations in terms of the q~. 

Of course, the use of the orthonormal set a, 
defined by Eqs. (5) is a matter of choice. Any set 
of (n - N) linearly independent vectors a i each 
of which is orthogonal to the vectors aR may be 
used to represent Dp •. When it is possible to trans­
form from the q~ to an independent set of true 
coordinates, the set of vectors a i will be the tangent 
vectors of a set of admissible coordinate curves on 
the hypersurface. Normalizing the vectors ai, the 
general form of the transformation equations which 
replace Eqs. (7)-(8) will then be 

dq = adi(n)d1Ji
, (15) 

f;)(n)d1Ji' = a'·dq = giiaj·dq, (16) 

where a vertical bar following an index indicates 
no summation over that index; gi; = ai'a; are the 
covariant components of the metric tensor in 8 and 
g'i the contravariant components formed from the 
basis vectors ai

; the vectors ai are reciprocal to 
the vectors a,. 

When the 1J i are true coordinates, the momenta 
conjugate to 1]' will be 

71"' = aL. = aL ~-f = aL ap,f.,(n) = aL ap;. (17) 
, aiJ' art ail' art" art' 

Ifthematrixa2LjaiJ i aiJ i is nonsingular, the momenta 
71", will be independent. If a2LjaiJi aiJ i is singular, 
there will be constraints and we must resort to the 
methods of Dirac3 or equivalently, Bergmann and 
Goldberg.4 Assuming the former case and multiply:­
ing Eq. (17) by ai" the reciprocal of a~, we obtain 

pI' = D~'(aLjaq} = a'~7r" (18) 

with pI' being considered the momentum conjugate 
to q". Assuming that 7J' and 7r; satisfy the standard 
Poisson bracket relations and using Eq. (15), we 
then find that 

(19) 

is the Poisson bracket between q" and p'. In quantum 
mechanics, Eq. (19) would have an i = (-1)~ on 
the right-hand side. The Hamiltonian will be given 
by the coefficient of 5t in Eq. (11) when a, is re­
placed by ai. 

B. Differential Coordinate Conditions 

In Sec. A above, the vectors aR were assumed 
to be algebraic functions of the q". When the vectors 

3 P. A. M. Dirac, Can. J. Math. 2, 129 (1950). 
4 P. G. Bergmann and 1. Goldberg, Phys. Rev. 98, 531 

(1955). 
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aB also involve derivatives of the q", we must treat 
problems involving a finite number of degrees of 
freedom separately from field theories when spacial 
derivatives occur in the latter situation. When only 
time derivatives occur, the methods of the last 
section are easily generalized and one is still led 
to Eqs. (13) and (14) when Eq. (1) obtains. 

The methods of the last section may also be 
applied to field theories when the vectors aR in 
Eqs. (1) are all linear differential operators with 
no dependence on field variables. However, the field 
variables must then belong to the domain of the 
aR allowing inverse operators to be defined. Equa­
tions such as Eq. (2) will obtain which involve linear 
operators acting on the field variables. Such equa­
tions will also be scalars with respect to coordinate 
transformations. The gauge conditions in electro­
dynamics are examples of such equations. 

When the vectors aR are linear differential op­
erators independent of the field variables, one can 
take Fourier transforms and deal with the problem 
in k space. The supplementary conditions are then 
of the algebraic type with the vectors aR still 
independent of the field vairables. 

C. Constraints in Phase Space 

However, because of spherical symmetry, it is 
simpler in the present case to introduce the unit 
vectors appropriate to spherical coordinates. Let 0 
and tp denote the spherical polar angles with tp being 
the polar angle in the Xl - X2 plane. Let 8 and <p 
denote the unit vectors tangent to the coordinate 
curves on the sphere such that f', 0, and <p form a 
right-handed system. Then 

(23) 

Using 88 and s" in place of '111 and 712, Eqs. (7)-(8) 
become 

dr = Ods8 + ¢;ds"" (24) 

dSe = O·dr = r dO} (25) 

ds" = <p·dr = r sin 0 dtp , 

where in Eqs. (25) we have utilized appropriate 
expressions in spherical coordinates. As is well 
known, Eq. (24) is not an exact differential when 
88 and 8", are considered independent variables and 
are quasicoordinates. On the other hand, of course, 
o and tp are true coordinates. For a Lagrangian of 
the form 

L = !mv2 
- V(r) , (26) 

When phase-space constraint equations of the form Eqs. (12) become 

GR(p", q") = 0 

exist, one may use the ideas of Sec. A above to 
develop a transformation to independent parameters 
which may be used to specify the constraint hyper­
surface in phase space. Once that is done, however, 
one must then resort to the canonical formalism 
of Bergmann and Goldberg. 4 

1lI. ILLUSTRATIVE EXAMPLES 

A. Particle on a Sphere 

• d Iav 
0·- (mv) 

r ao ' dt 
(27) 

<p.1:... (mv) 1 av 
dt - r sin 0 atp , 

which are the familiar equations for the problem 
in spherical coordinates. Finally, Eqs. (17) take 
the form 

'lr8 = mv.~} , 
'Ir", = mv·tp 

(28) 

Using Cartesian coordinates x\ X2, X3, the algebraic while Eq. (18) yields 
coordinate condition is 

(29) 
XiX

i 
- const = 0, (20) 

where Xi = Xi since they are Cartesian coordinates. 
Since N = 1, we have a = r, where r is the position 
vector with components (xt, x2

, x3
). Introducing the 

unit radial vector f' = rlr, we have 

(21) 

From Eq. (5) we get 

p = mY, 

where use has been made of the supplementary 
condition, r = o. 

B. Vacuum Electrodynamics in Configuration Space 

Let the supplementary condition be the Coulomb 
gauge condition 

V·A = 0, (30) 

(22) where A(x) represents the vector potential. It is 
seen from Eq. (30) that a = V so that care must 
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be taken to maintain the proper sequence of factors Eq. (19) takes the well-known form 
throughout. If solutions for A are restricted to the 
domain of the inverse operator (\72)-1, then we [A,,(x, t), aIA,(x, t)] 

may write 

(31) 

where a" = a/ax". Let ~1 be a unit vector in the 
positive one direction. Let 

(32) 

a'a1 = 0 and we set 

(33) 

The inverses of a~ and a; are needed to form 0,1 

and O2 so that we assume A is also restricted to the 
domain of such inverses. 

Since Eq. (30) is linear in the field variables, 
Eqs. (7)-(8) may be directly integrated in the present 
case to yield forms linear in the field variables also. 
Replacing 1/' by ~'(x) and keeping the operators 
0, to the left of field variables, we have 

A(x) = O,~;(x), 

~'(x) = O;·A(x). 

From the Lagrangian 

(34) 

(35) 

L = ~ J d3X[(d I A)2 - (V xA)2] (36) 

and Eqs. (17)-(18), we find 

11", = a,'dIA, 

P A = dlA = 0'11",. 

Equation (13) becomes 

(\72 
- d~)A = O. (39) 

Assuming ~' and 11", are canonical conjugates so that 

[~'(x, t), 1I"j(x', t)] = 8,j8(x - x'), (40) 

(41) 

C. Vacuum Electrodynamics in Momentum Space 

We again assume the Coulomb gauge and take 
the Fourier transform of A(x). The basic equations 
in the present case may then be obtained by taking 
the Fourier transforms of Eqs. (30)-(41). In particu­
lar V ~ ik, the propagation vector mUltiplied by 
(_1)1 and a, ~ E" the polarization vector. 

Of course, the Fourier transforms of Eqs. (31) 
and (41) are well known. However, the use of a 
reduced Lagrangian to introduce a reduced Hamil­
tonian formalism is generally not presented in the 
standard literature. 

IV. DISCUSSION 

In the sentence below Eq. (18), reference is made 
to its quantum mechanical analog. The statement 
requires elaboration because D'" is generally a func­
tion of functions of the q" and inverses of such 
functions. Such inverses arise in connection with 
the transformation from (q", pI') ~ (1/', 11",). If the 
q" and pI' are to be treated as quantum operators, 
the required inverses must exist in the domain of 
physical states. The latter situation also presumes 
that no undefined inverses are introduced in trans­
forming from i/ ~ 11", in going from the Lagrangian 
to the Hamiltonian formalism. In any case, the above 
problem does not arise when the supplementary 
conditions are algebraic and linear in the q". In the 
latter circumstance, the vectors aR and a, are all 
c numbers. 
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Singular Bethe-Salpeter Scattering Amplitudes* 

ARTHUR R. SWIFTt AND BENJAMIN W. LEEt 

Department of Physics, University of Pennsylvania, Philadelphia, Pennsylvania 

The Bethe-Salpeter equation for scattering is investigated in configuration space for the class of 
singular "potentials" (i.e., a Np4 theory in the ladder approximation) which behave as r-4 near the 
light cone. The discussion relies on the similarity between solutions of the Bethe-Salpeter equation 
and the Schriidinger equation where the corresponding problem is scattering by a r-t potential. 
Through a consideration of the asymptotic properties of the two-particle, free Green's function, 
the elastic scattering amplitude is shown to be the coefficient of the outgoing wave part of the wave­
function, just as it is in the nonrelativistic case. At zero total energy, it is just the coefficient of e-mr Irl. 
The differential form of the Bethe-8alpeter equation is expanded in four-dimensional spherical 
harmonics, and the singular part of the potential is incorporated into the differential operator. The 
resulting equation is formally solved by converting it into what is now a Fredholm integral equation. 
Care is taken to choose the proper asymptotic behavior for the solutions of the new equation. The 
discussion of the singular potential is carried out at zero total energy in order to obtain spherical 
symmetry. The technique for handling the singular potential and extracting the T matrix at zero 
energy is demonstrated by application to two examples. The exact scattering amplitude is found for 
exchange of two massless mesons. A first-order solution is obtained for a phenomenological potential 
that approximate the exchange of two massive mesons. This solution exhibits many of the features 
expected from a truly physical potential. 

I. INTRODUCTION 

T HE purpose of this paper is to discuss the 
properties of a class of singular Bethe-8alpeter1 

equations in the ladder approximation. The Bethe­
Salpeter equation, originally developed more than 
ten years ago, has recently become the object of 
intensive study.2-6 Primary among the reasons for 
this renewed interest is the fact that the Bethe­
Salpeter equation promises to provide a nonper­
turbative, fully covariant, approach to two-body 
problems. In addition the equation includes the 
features of analyticity and elastic unitarity de­
m~nded of physically meaningful theories. However, 
before all these virtues can be fully exploited, much 
work must be done on the general nature of the 
equation. In the absence of any scheme to completely 
solve the Bethe-8alpeter equation there are two ways 
of extracting information. Either very general prop­
erties are elicited from the symmetry, asymptotic 
structure, and singularities of the equation; or 

• This work is supported in part by the U. S. Atomic 
Energy Commission. 

t National Science Foundation Predoctoral Fellow. This 
work is part of a Ph.D. thesis to be submitted to the Univer­
sity of Pennsylvania. 

t Alfred P. Sloan Foundation Fellow. 
1 H. A. Bethe and E. E. Salpeter, Phys. Rev. 84, 1232 

(1951); M. Gell-Mann and F. E. Low, Phys. Rev. 84, 350 
(1951 ). 

2 R. F. Sawyer, Phys. Rev. 131, 1384 (1963). 
I A. R. Swift and B. W. Lee, Phys. Rev. 131,1857 (1963). 
t M. Baker and 1. J. Muzinich, Phys. Rev. 132, 2201 

(1963). 
I A. Bastai, L. Bertocchi, S. Fubini, G. Furlan, and 

M. Tonin, Nuovo Cimento 30, 1512 (1963). 
• A. Bastai, L. Bertocchi, G. Furlan, and M. Tonin, 

Nuovo Cimento 30, 1532 (1963). 

particular values of the parameters are chosen to 
make the equation exactly soluble. In this paper 
we will apply both approaches quite extensively. 
For example, we will choose our total energy to be 
zero in order to obtain four-dimensional spherical 
symmetry; . the most singular terms of the general 
equation have this symmetry so our results should 
be significant. 

We restrict our discussion to a consideration of 
meson scattering by means of a class of singular 
potentials. By a singular potential we will mean 
one that behaves as r-4 at the origin of a four­
dimensional Euclidean space; on account of that 
behavior the corresponding Bethe-8alpeter equation 
is no longer of the Fredholm type. It might be 
mentioncil·that the potential for a }..cf/ theory has 
this r- 4 behavior in the ladder approximation. 
Several investigators have considered the problem 
from the bound-state point of view and have shown 
how to convert the singular equation into a Fredholm 
one.6 ,6 We refer the reader to this work for a complete 
discussion of the classification of potentials and the 
problems in treating singular ones" 

It turns out that the conversion into a Fredholm 
equation is best accomplished in configuration space, 
and it is in configuration space that the interpreta­
tion of the Bethe-8alpeter amplitude is most obscure. 
Therefore, we devote some effort to demonstrating 
how, in analogy with the Schrodinger wavefunction, 
the Bethe-Salpeter "scattering wavefunction" can 
be used to calculate the scattering amplitude. To do 
this we examine its large spacelike distance limit. 

908 
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For a center of mass energy greater than 2m, where 
m is the mass of the scattered particles, the asymp­
totic form at a finite time is strongly reminiscent 
of that of the Schrodinger wavefunction. In partic­
ular the T matrix is given by the coefficient of 
e i

'" jEr (where E is the center-of-mass energy), 
just as it is in the nonrelativistic case. On the other 
hand, for a total energy less than or equal to 2m, 
the asymptotic behavior is considerably more com­
plicated. At zero energy the behavior of the "out­
going" wave is simply e-mrjr1 with the T matrix 
again as its coefficient. The discontinuous behavior 
of the asymptotic form at 2m is a reflection of the 
analyticity properties of the Bethe-8alpeter ampli­
tude as a function of the total energy squared; 
the point 4m2 turns out to be a branch point of 
the two-particle, free Green's function. The behavior 
at zero total energy, explainable in terms of an 
accumulation phenomenon, is sufficiently different 
from that of finite energy to render suspect any 
efforts to place much emphasis on the exact form 
of the solutions. It is true, however, that techniques 
developed for solving the zero-energy equation should 
be applicable to future attacks on the finite-energy 
problem. It is with this expectation that we specialize 
our discussion of singular potentials to the zero­
energy case. We should also mention that the zero­
energy results do have some physical use; when 
used in crossing relations, they give the forward 
scattering amplitudes in the crossed channel. 

Although Bastai, et al.5 have given a complete 
discussion of the technique for removing the singular 
part of a potential, the method they develop leads 
to difficulties in the scattering problem. Therefore, 
we present an alternate approach to this question 
which is more useful in a treatment of scattering 
in as much as it does not generate a r- 2 potential, 
which behaves badly at infinity. The equation we 
obtain is of the Fredholm type, but care has to be 
exercised in choosing the free solutions with the 
correct asymptotic behavior. We demonstrate that 
a knowledge of the asymptotic form of the exact 
solution, coupled with the requirement of regularity 
at the origin, is sufficient to uniquely determine the 
correct solution of the altered equation. The situa­
tion again is very analogous to that prevailing in 
potential theory, as we explicitly demonstrate in 
Appendix C. 

In Sec. II of this paper we present a general 
discussion of the Bethe-8alpeter equation in order 
that this paper may be relatively self-contained. 
Section III is devoted to a treatment of the two­
particle, free Green's function with particular em-

phasis on its. asymptotic and analytic properties. 
That information is used to extract the T matrix 
from the zero-energyand physical energy amplitudes. 
Thus, Secs. II and III are intended to be pre­
liminary to the discussion of the singular potential. 
Most of the mathematical details for Sec. III are 
worked out in Appendices A and B. In Sec. IV 
we discuss the singular potential. Then, in Sec. V 
as an illustration of technique we obtain the T 
matrix for elastic scattering of mesons by exchange 
of zero-mass mesons and for a more realistic, though 
nonphysical, potential. Appendix C is devoted to 
treating the Schrodinger equation in the same 
manner as we have the relativistic equation in 
order to demonstrate further the analogy between 
the two problems. 

II. THE GENERAL EQUATIONS FOR NONZERO 
ENERGY 

As the starting point of our discussion of the 
scalar Bethe-8alpeter equation, we write down the 
ladder approximation form of the equation in 
momentum space.7 

'It(p, q, E) = 'lto(P, q, E) 

J d4k 'It(p, k, E) V(k - q) 
+ (271/' [(k + !E)2 _ m2][(k _ !E)2 _ m2] , (1) 

where E is the total energy of the system in the 
center of mass, while p and q are the relative four­
momenta of the initial and final particles, respec­
tively. Here m is the mass of the particles being 
scattered; they are considered to be identical but 
distinguishable particles. When p and q are taken 
to have their physical values for elastic scattering 
(p2 = q2, p2 + m2 = iE2), 'It(p, q, E) becomes 
the T matrix for meson-meson scattering. 'lto(p, q, E) 
is given by 

'!to(p, q, E) = [lj(271/]V(p - q) 

and V(p - q) is of the form of an integral over 
the products of propagators for the exchanged 
particles of the ladder diagrams; it can be taken 
to be the Fourier transform of a potential. For 
example, in the case of a ACP~CP; theory, V(p - q) 
can be written as 

V(p - q) = J d4x ei(p-a)'''V(x) 

(iX/ J d
4
k 

= (271l W - ,1l] [(k - p + q)2 - l] 

= ~ J d4x e,(p-a)'z ~~(x), (2) 
----

7 Our metric is defined by goo = -gH = 1. 
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where .1,(x) is the usual causal Green's functionS 
for the Klein-Gordon equation and Po is the mass 
of the exchanged particles. 

If 'It(x) is defined as the Fourier transform of 
'It(p, q, E), 

( ) 1 J d4 '(0) '''''T,(p E) 'It x = (2'lIl q e ~, q, , 

it is found to satisfy an integral equation of the form 

( ) 1 V() 'P'~ 
'It x = (271'/ x e 

+ Vex) J d4x' G(x, XI)'It(X' ) (3) 

where 

G(x, x') 

1 J d4k e'k'(z-,,') 
= (271')4 [(k + iE)2 _ m2][(k _ iE)2 _ m2]' (4) 

If we let 'It(x) = V(x)<t>(x)/(271')\ we find that 

<t>(x) = e'P'z + J d4x' G(x, xl)V(X')<t>(x' ). (5) 

This equation is recognizable as the integral Bethe­
Salpeter equation in configuration space for the 
scattering problem.9 Equation (5), although not of 
the Fredholm type for singular potentials, is never­
theless meaningful. Using the known behavior of 
<t>(x) at zero and infinity, we can show that the 
integral in (5) is convergent. The differential equa­
tion and boundary condition coorresponding to (5) is 

X [<t>(x) - <t>o(x)] = V(x)<t>(x) (6) 

with <t>o(x) = e'P·z. The first point to be noticed 
is that the above relations provide a direct connec­
tion between the T matrix and the Bethe-Salpeter 
amplitude in configuration space: 

T(p, q, E) = J d4x e-'o'''Ir(x) 

= (2!)4 J d4x e-,oozV(x)<t>(x). (7) 

This is almost identical to the relation between the 
8 For explicit forIIl8 of Ll,(x) see N. N. Bogoliubov and 

D. V. Shirkov, Introduction to Quantized Fields (Interscience 
Publishers, Inc., New York, 1959), p. 147. For spacelike 
distances it is given by 

p.K1(p.r)/4rr. 
9 S. S. Schweber, An Introduction to Relativistic Quantum 

Field Theory, (Row, Peterson, and Company, New York, 
1961), p. 716. 

scattering amplitude and the Schrodinger wavefunc­
tion in nonrelativistic theory. 

The Green's function G(x, x') Can be written in 
several forms, but the simplest one for taking the 
asymptotic and zero-energy limits is 

. f1 
G(x, x') = 4(2~)2 -1 daeB.(z-~')a!2 

where A = Ix - x'I. Ko(x) is the zero-order modified 
Bessel function of the second kind, and the relative 
time has been taken pure imaginary. We derive 
this form in Appendix B. We have assumed in 
deriving (8) that E is in a range in which we may 
perform Wick's rotation of the contour10 and use 
a Euclidean metric; however, in this representation 
E can take all values. In the cases under considera­
tion here, the potential is a function only of Ixl = r 
in the Euclidean metric. If <t>(x) is expanded in 
four-dimensional spherical harmonicsll of the angles 
n == ({3, 8, cp), the following equation is obtained: 

L: {[a2

2 
+ £!!.... _ m2 + (§.)2 _ n(n t 2)J2 

... I.m ar r ar 2 r 

- E2( cos {3 :r - s~ {3 :{3)2}[<t> .. ,.,(r) 

- <t>o., .. (r)]y7 .. (n) = VCr) L: <t> .. ,.,(r)y~(n). (9) 
.. 1m 

m. PROPERTmS OF THE BETHE-SALPETER 
GREEN'S FUNCTION 

The integral in (8) is very difficult to do exactly; 
however, as demonstrated in Appendix B, it can 
be evaluated in the limit as A becomes infinite. 
Before doing that we look at another form of G(x, x'} 
which displays its analyticity properties as a function 
of s = E2. From (A5) we see that 

. IJ.'" d' G(x, x') = (2~)2 - _,_S _ 
7r W 4 .. ' S - S 

[
(Sl - 4m2)! J X exp [ -ii(S')!t] sin 2 w 

X Ls~t cos (it(s)!) + i (s \t sin (it(s)!) ]. (10) 

where w = Ix - x'I and t = Xo - x~. We now see 
that G(x, x') is an analytic function of s with a 
cut extending from 4m2 to infinity; as explained 
in Appendix A, the apparent cut from minus infinity 

10 G. C. Wick, Phys. Rev. 94, 1124 (1954). 
11 M. Gourdin, Nuovo Cimento 8,338 (1958). 



                                                                                                                                    

SIN G U L ARB E THE - SAL PET E R seA T T E R IN GAM P LIT U DES 911 

to zero does not exist. Thus we see, as mentioned 
above, G(x, x') can be continued out of the region 
8 < 4m2 to the physical region by supplying a 
small positive imaginary part to E2 or equivalently 
a negative imaginary part to m2

• This justifies the 
procedures we use in Appendix B. Furthermore, 
since 4m2 is a branch point of G(x, x'), we can expect 
its behavior to be pathological there. Indeed, as 
described below, the effect of this branch point 
appears in a consideration of the asymptotic be­
havior of G(x, x'). 

Next, we evaluate the asymptotic form of G(x, x') 
starting from (8). In view of the above mentioned 
singularity of the Green's function we evaluate its 
limiting form for four separate cases. The mathemat­
ical details are worked out in Appendix B. For 
E > 2m, we have from (B29a) 

lim G(x, x') 
A-a> 

_ i...- ei
,,). + -.i.- cosh [(P jE)E· (x - x')] (11) 

- 471" E"A 471"2 pE"A2 

where p2 + m2 = lE2. If the potential Vex') falls 
off sufficiently rapidly as r' = Ix'i becomes large, 
(11) leads to the limit 

lim G(x, x') Vex') 

this case12 

ipr 

CI>(r, fJ.) = e
iprN + ~r f( fJ.) 

and 

since Iql = Ipl. Comparison of (15) with (7) now 
gives us another method of extracting the T matrix 
from CI>(x), 

T(p, q, E) = -(ij471"3)f(fJ.). (16) 

The Bethe--Salpeter amplitude in configuration 
space, if taken at zero time (or any finite time), 
has the elastic scattering amplitude as the coefficient 
of an outgoing spherical wave. This behavior, as is 
well known, holds also for the scattering solutions 
of the Schrodinger equation. N onrelativistically the 
T matrix, up to constant factors, is the coefficient 
of eipr jr in the asymptotic wavefunction. This is 
just the nonrelativistic limit of what we have found 
for the Bethe--Salpeter amplitude and encourages 
a wavefunction interpretation of CI>(x). 

If we look next at what happens when E = 2m, 
we see from (B24b) that 

1· G( ') __ i_ 1 
1m x, x - 2(2)2 " . 

A_a> 71" m" sm 'Y 

[

• '"Cr-z,z'/r) • C,,/ElE.CZ-Z')] _ ,.!..e te , 
- 4 E + E 2 VeX ). 71" r p r (12) where cos 'Y is defined by 

We have assumed that E·x is positive. Substitution 
of this relation into (5) shows us that 

(13) 

This equation may be rewritten using a simpler 
notation. 

. eipr epr 008 ~ 

CI>(x) '" e''''Z + -E f(fJ) + -E 2 g, (14) r p r 

where f(n) and g may be identified by comparisons 
with (13). (cos fJ is defined by X4 = r cos fJ in our 
four-dimensional Euclidean space). 

The term proportional to g will dominate for 
cos fJ ¢ O. If cos fJ is negative, we just replace it 
by Icos fJl and use a slightly different g. If, however, 
cos fJ is zero, the term proportional to f(fJ) will 
dominate. This is just the situation we have if fJ 
is taken to define the direction of the outgoing 
relative momentum in the scattering process. In 

E·(x - x') r cos (:3 - r' cos (:3' 
cos 'Y = E"A = "A • 

This limit implies in turn that the asymptotic form 
of CI>(x) is given by 

CI>(x) '" 1 + 2(2 ~2 J d4
x' -. 1_ V(x')CI>(x') 71" mr sm 'Y 

2 1 
= 1 + - . fJ f· (17) 71" mrsm 

The last step in (17) follows from the fact that in 
the limit of r becoming infinite cos 'Y become identical 
to cos fJ. In this zero-momentum case we have no 
exponential behavior; in fact, we have a scattering 
length form of the Bethe--Salpeter wavefunction. 
At zero time (fJ = !71") f is the zero-momentum 
limit of (15) and gives the corresponding T matrix 
by (16). Again the Bethe-Salpeter amplitude exhibits 
a behavior extremely similar to that of the Schr6-
dinger wavefunction. 

12 This result for the Bethe-Salpeter amplitude may be 
well known, [for example, S. Okubo and D. Feldman, Phys. 
Rev. 117, 279, 292 (1963)]; however, the main purpose of 
the section is to obtain (22), which may be a new result. 
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If we now go to the region where E < 2m, we 
find an entirely different asymptotic formula. From 
(B29c) G(x, x') is seen to have the form 

. , ~ 7f' m -m). 2 · ( )l 
~~ G(x, x) = (27f'/ 2mA EA e 

X {2m cos'}' sinh (lEA cos,},) + E cosh (lEA cos'}')} 
(2m2 cos2 

'}' - E2) 
(18) 

where cos'}' is as defined previously. The asymptotic 
form of eI>(x), indicated by the above limiting form 
of the Green's function, is complicated and not very 
illuminating. When cos (3 is zero, the situation is 
simpler, and we have 

eI>(x) '" e'P'" + (:~2 (;; r e~;r f'(0), E ~ O. (19) 

Here, p is a pure imaginary vector of length i(m2 
-

iE2)l. We see that for zero time (or finite time, 
eI> - e'P'" behaves like e-mr /r!; however, its co­
efficient, 1'(0), is not simply related to the T matrix. 

Until now we have worked at finite energies and 
momenta. As can be seen from (8) and (9), the 
presence of finite-energy terms removes four-dimen­
sional spherical symmetry and enormously compli­
cates the problem. Therefore, we go to the case 
of zero energy and hope no essential physics is lost. 
In this limit the integral in (8) is trivial, and the 
integral equation for eI>o(x) is 

eI>o(x) = e'P'''' + 2(2~)2 J d4x' Ko(mA) V(x')eI>o(x') (20) 

where p = im(O, 0, 1, 0) and defines the z axis. 
Using the known asymptotic form of KO(y),13 we 
see that 

lim Go(x, x')V(x') 
r ...... 

= 2(2~)2 (2:rYe-
mr

e
m
"""'/rv(x') (21) 

where Go(x, x') is the zero-energy Green's function. 
The asymptotic form of eI>o(x) is 

eI>o(x) '" e'P'" + [e- mr /(mr)i]fo(O), (22) 

where 

fo(O) = [i/2(27f'/](!7f')i 

X J d'x' em",.,,·/rV(x')eI>o(x'). (23) 

When 0 is taken in the direction of ~ which like 

11 H. B. Dwight, Tables of Integrals and Other Mathe­
matical Data (The Macmillan Company, New York, 1957). 

p has length im, 1(0) is the T matrix up to constant 
factors. More explicitly from (7) we see that 

T(:p, q, E = 0) = (~i)(1/27f')l/0(n). (24) 

Thus we see that in some respects the zero-energy 
case resembles the physical scattering problem with 
E 2:: 2m more than it does the 0 < E < 2m case. 
The zero-energy behavior is a continuation of the 
finite-energy behavior since (18) with E = 0 does 
give (21). This limit, however, depends on whether 
cos'}' is zero or not while (21) is valid for all cos '}'. 
Since the method of extracting the T matrix is so 
similar in the zero-energy and physical situations 
and since problems of normalization of eI>(x) should 
be similar in both cases, we go on to a consideration 
of singular potentials with the hope that the tech­
niques developed at zero energy will be useful for 
the physical problem. 

IV. ZERO-ENERGY SCATTERING BY A SINGULAR 
POTENTIAL 

In the zero-energy limit the coupled differential 
equations for eI>nl.,(r) represented by (9) decouple 
and can be written in the form 

[
d2 1 d 2J2 - + - - - m2 

- ~ reI> (r) dr2 r dr r2
• 

== (0. - m2/reI>. = V(r)reI>.(r) (25) 

for each order n = II - 1. We have suppressed 
the (l, m) indices and rewritten eI> .. (r) as eI>.(r). Now, 
as mentioned by Bastai, et al./ VCr) in several 
theories including A~~~: behaves like r-4 as r goes 
to zero. This means that the integral equation 
obtained by a Green's function solution of (25) is 
not of the Fredholm type. However, it is possible 
to remove this most singular term by incorporating 
it into a new differential operator. Specifically, if 
VCr) can be written as 

VCr) = a/r4 + VCr) 

where VCr) goes as r-3 at worst, there exists the 
identity14 

(0. - m2
/ - a/r' 

= (l/r)(O •• - m2)r2(0 •• - m2)(1/r) , (26) 

where 

II~ + II~ = 2(l + 1), 
14 This transformation corresponds to {J = 2 in Ref. 5. 

According to their footnote 11, Banerjee, Kisslinger, and 
Levinson have also considered the case {J = 2. Professor 
Kisslinger informs us that Levinson and Muzinich have 
considered much the same problem as we discuss here. 
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(27) 

In order to keep our solutions real for all v we will 
restrict a to lie in the range - 4 < a < O. UI In the 
limit of vanishing coupling constant v = v and w = 1. 

<I>.(r) now satisfies the equation 

(1/r2)[O" - m~r2[O" - m2]<I>,(r) = V(r)<I>.(r). (28) 

If we let p = mr and set VCr) equal to zero, we 
find the four independent solutions, I,,(p), I,,(p), 
K.,(p), and K,,(p). I. and K, are the first and 
second kind of modified Bessel functions of order v. 
I is well behaved at the origin, but grows expo­
n~ntiallY at infinity; K. goes as p-' at the origin 
and decays exponentially at infinity. These four 
solutions may be used to construct a Green's func­
tion for the differential operator. The result is 

a.(r, r') = (1/4wv)[I.,(p<)K,,(p» 

- I ,.(p<)K,.(p»]. (29) 

<I>,(r) now satisfies the new integral equation 

<I>,(r) = <I>~,(r) + I''' r,aG,(r, r') V(r')<I>.(r') dr'. (30) 

<I>' is some linear combination of the V = 0 solutions. 
b • 

<I>~, can be determined by an appeal to (22) whICh 
shows that the scattering modifies only the co­
efficient of e -In'. The term in em, must thereby be 
unaltered from that contained in the expansion of 

. h h . 16 e'P·"'. At zero energy It as t e expansIOn 

'P'''' - " I n+1(mr) A ym(n) (31) e - L..J nZm In Illiz , 
.. ,I,m mr 

where 

A .. I .. = (2'1I/[Y7'n(Q,,)]* . (32) 

This implies that <I>.(p) has the asymptotic form 

A eP 

<I>,(r) r-.J (211'")1 pI , A. == Anlm • (33) 

At the origin the behavior of <I>, is distorted by the 
potential; in fact, <I>. must go as pH, or p±". If we 
insist that <1>. be regular at the origin, or, more 

16 The restrictions on a are considered in more detail in 
Ref. 5, though their justification is no more rigorous than 
ours. . . A d' 

16 This result is obtained fr~m the exp~slon m p~en. lX 
II of Ref. 11 by letting p go to e,rl2p and usmg the prescnptlOn 

J .. (e'r/2Z) = e-'nrln(Z). 

stringently, that it go as p", we have. another 
normalizing condition on <1>.. Parenthetically we 
remark that this behavior at the origin is maintained 
for the physical energy problem. This in turn means 
that the full amplitude <I>(x) will go as rQ at the 
origin where a is given by the v = 1 term of <I>(x). 

a = [1 + !( _a)i]i - [1 - !( _a)i]i. 

This behavior verifies our statement that the integral 
in (5) is convergent. Returning to the problem of 
normalizing <I>~" we see that choosing the behavior 
p" corresponds to insisting that as the coupling 
constant goes to zero <I>.(r) must match <1>0, (r). The 
most general form for <I>~r in (30) is 

<I>~,. = All" + A2I" + AsK., + A4K. , . (34) 

Asymptotically <I>~o becomes 

e
P 

( 4v~ - 1) 
Al (211'"Pi 1 - 8p 

e
P 

( 4v~ - 1) + A2 (211'"p)t 1 - 8p . (35) 

Using (33) and the fact that V(p) asymptotically 
becomes -ap-" we find that f G11<1> goes as ePI!~7/2. 
This in turn means (35) will dominate f GV<I>; 
accordingly, Al and A2 must be chosen to make (35) 
agree with (33). Thus, A2 = -AI and Al = A,/2wv. 
It should be pointed out that this choice of Al and A2 
makes <1>0' and <I>~, agree to order p -6/2 as well as 
p -3/2. A comparison of the above discussion with 
Appendix C shows how similar the Schrodinger 
wavefunction and the Bethe-Salpeter amplitude 
really are. The problem of choosing the correct 
free behavior, after the singular potential has been 
absorbed into the differential operator, is essentially 
identical in the two cases. 

Next we consider the behavior at p = O. If <1>, 
goes as p", then f G11<1>, also goes as p"; In fact, 
if we had insisted that <1>, go as p", we would have 
found such behavior inconsistent with the integral 
equation. In any case As and A4 must vanish to 
ensure proper behavior at the origin. Thus, <1>, 
satisfies the integral equation 

<I>,(r) = ;:;v [I., - 1,,] 

+ r'" r,sG.(r, r') V(r') <I>,(r') dr'. (36) .10 

The integrals in this equation converge for all 
values of the coupling constant. Moreover, the 
kernel is square integrable and has finite trace .for" 
all values of the coupling constant, both positive: 
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and negative. The proof of these statements is easy, 
so we content ourselves with demonstrating the 
existence of the trace. The other statements are 
proved in a similar fashion. 

The trace of the kernel is given by the integral 

tr K = LX> r3(j.(r, r)V(r) dr ex: 1'" /[K •• (p)I •• (p) 

- K •• (p)I •• (p)]V(p/m) dp. (37) 

Under the assumption that the true potential VCr) 
was exponentially damped V(p/m) will be dominated 
at infinity by the counterterm - ar -4. Asymptotically 
the product KJ. is proportional to p -1. Hence at 
infinity the integrand behaves as p -6 which is suffi­
cient to ensure convergence. At the origin we have 
removed the r- 4 behavior from VCr), so yep) behaves 
at worst like p -3. The product K.I. becomes con­
stant at the origin, so we see that tr K does exist. 
Equation (36) is thus a Fredholm equation, and 
all the usual theorems apply. 

Equation (36) should be contrasted with the one 
derived from the work of Bastai, et al.,D by the 
same method. In that case, the resultant equation 
admits only bound-state solutions. 

V. APPLICATIONS 

An explicit solution of (36) with a physical poten­
tial runs into formidable computational difficulties. 
For example, if we had a A4> 4 theory where the ex­
changed mesons had the same mass as the scattered 
ones, VCr) would be proportional to [Kl(mr)]2/r2. 
The integrals necessary to obtain even a first-order 
solution with this potential are not readily available. 
If, however, we consider scattering by exchange of 
massless mesons, the problem becomes completely 
soluble. From (2) the potential is given by 

V( ) - J k -i,,·~ J d4

k (iA? 
x - (211/ e (211"t k\k _ p)2 

(38) 

Therefore, for the exchange of massless mesons, 
VCr) is identically zero and the complete solution 
for <1>. is given by <1>6.. To get the T matrix, we 
extract the coefficient of e -P / pi from <1>6. by use 
of the more exact form of the asymptotic behavior 
of I.(p)17: 

17 Y. L. Luke, Integral8 oj Be8sel Functions, (McGraw­
Hill Book Company, Inc., New York, 1962), p. 32. 

I.(p) = ~ [eP + e-('+l) "ie- P] 
(211"p) , 

-!11" < arg p < !11". (39) 

The asymptotic behavior of I.(p) exhibits a Stoke's 
phenomenon in the sector -!11" < arg p < !11". 
In Appendix C we discuss the choice of the phase 
factor in the second term on the right-hand side 
of (39). The coefficient of e-P 

/ pi is now seen to be 
equal to 

A. [e- H ''+ i )'' _ e- H '.+ l ) "] 

2wii (211")f 

A, e- iil
" sin W7r 

= (211")1 wfi (40) 

Substitution of this result into (24) gives 

T(p, q, E = 0) 

. -i~T • -"/, ~ e sm 1I"W m 

= ~ £.oJ A"zm _ Yz,,(n.) 
11" n.Z.m WII 

= -2i L e-
ih 

~in 1I"W [y7,,(n,,)]*y7 .. (O.) 
11" .. Zm WII 

. '" 
-"/, ~ II -iv,,' C1 (,;; ) = -3 £.oJ -= e sm 1I"W .-1\1" q . 
11" .-1 WII 

(41) 

In the last step we have used the addition theorem 
for the four-dimensional spherical harmonicsll to 
give the Gegenbauer function of p.q = p·q/m2

• 

The expansion should be symmetrized to take 
account of the identity of the scattered particles. 
This condition restricts the sum to odd values of II. 

The presence of the phase factor in (40) seems 
surprising at first since it arises from an ostensibly 
real function. The nonreality exists only to the 
extent that we are using the asymptotic form of 
I.(x); the imaginary part is infinitesimal compared 
to the real part. An examination of Appendix C 
shows that exactly the same sort of phase factor 
occurs in the nonrelativistic problem. There the 
resultant T matrix is independent of energy; for 
positive energy the phase factor is expected, and 
our prescription for extracting the T matrix for 
negative energy works to provide the same phase 
factor, as it must. We conjecture that the same 
sort of behavior holds for the relativistic problem 
to the extent that (41) may be valid even for positive 
energies. 

As a check on our methods (41) can be compared 
with the results of Baker and Muzinich. 4 They solved 
the problem of scattering of massless particles by 
exchange of massless particles. Comparison of their 
Eq. (III.9) with (41) shows that the results agree, 
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at least in form, in the weak coupling limit. In fact, 
their result for T(p, q, E = 0) is in error if higher 
orders in the coupling constant are considered. 

As a second, and perhaps more physical example, 
we consider scattering by the potential (setting 
m = 1, hereafter) 

V() - 2a Kt(2r) _ ae-
2r

. (42) 
r -;t r7/2 - r 4 

This potential matches the behavior at the origin 
of the ACP 4 potential described at the beginning of 
this section. At infinity it differs only by a multiplica­
tive factor proportional to r- 1

• Therefore, it should 
be representative of the sort of behavior that might 
be found in a physical problem. More importantly, 
the integrals involved in a first-order approximation 
are possible. 

By the application of Fredholm theory we see 
that the first-order solution of (36) is given by 

cI>.(r) = ;:,~ {[J., - I •• { 1 - J r,a dr'G.(r', r')V(r') J 
+ J r,adr'G,(r,r')V(r')[I.,(r') - I,.(r')]} 

X [1 - J r a drG.(r, r) VCr) J1, (43) 

where 

V-() - [2 !fJJ2r) - 1.J - ~ r -2r - 1] r - a:J 7/2 4 - 4 le , 
11" r r r 

(44) 

and G,(r, r') is given by (29). The denominator 
function may be calculated exactly. The required 
integral is the trace of G. V, 

- - a 1'" dr tr G. V = 2----=- - [K.,I., - K • .J •• ] 
IIW 0 r 

X [~riKt(2r) - 1 J. 
Taking the difference of the formulas IS 

2 10> dx :J -:I I.(x)K.(x)Kl-e(2x) 
'II" 0 x 

(45) 

r(II + !E)r(!e)r(1 - e) 
42'r(1 + II - iE)r(1 - !E)' 

(47) 

we get the integral in (45) in the limit as E goes 
to zero. (The divergent parts cancel nicely.) 

l'" ~ K,I.[~ r tK t (2r) - 1 J 
_ [6 In 2 - 4!{t(II + !) + !{t(II) + !{t(II + 1)]. (48) 
- 411 ' 

!{t(II) is the logarit4mic derivative of r(II). Equation 
(48) holds for II ¢ 1. For II = 1 our method breaks 
down, but we show in Appendix D that (48) is 
then equal to - h 2

• The trace of the kernel for 
nonzero II is thus given by 

tr G V = ~ {6In2-4!{t(II 1+ t)+!{t(II1)+!{t(II1+1) 
• 16wii "l 

- (Ill f-+ 112)}' (49) 

To lowest order in a we can replace w by unity and 
ji by II everywhere in this expression, 

tr G. V = aDell) 

"" ...!!:..- {12 In 2 + 4!{t(II + !) _ 4!{t(II - t) 
- 1611 112 - 1 II + 1 11 - 1 

!{t(II + 1) + !{t(II + 2) 
II + 1 

II> 1 + !{t(II - 1) + !{t(II)} , 
II - 1 

(50) 
"" ~ {_ '11"2 _ 6 In 2 - 4!{t(!) + !{t(2) + !{t(3)} 
-4 4 8 ' 

II = 1 
~ -0.9a. 

Now we turn our attention to the numerator of 
(43). Since I., - I •• is itself of order a, we drop 
the trace term in the numerator. There are then 
two sorts of integrals involved, neither of which 
we can do. However, if we ask for the coefficient 
of e -r Ir!, our task is much simpler. Terms of the form 

ret - E)r(E)r(t + II - E)r(II + E) 
2'11"lr(1 + II - E)I'ct + II + E) 

(46) I.(r) fO> d~' K 2(r')I,.(r')[e-2r - 1] 
r r 

18 Tables oj Integral TransfOTTlUJ, edited by A. Erdelyi 
(McGraw-Hill Book Company, Inc., New York, 1954), Vol. II, 
p.372. 

it See Ref. 17, p. 325. 

"" 2C2~)1 [e
r + 5,e-

r
] 

X f'" d~~ e-r'[e+r' + 5,.e- r'][e-2r ' - 1] (51) 
r r 

do not contribute. The coefficient 5. is just the phase 
factor from (39). The parts of (51) which are 
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exponentially decreasing fall off at least as fast as 
e~r Irt. Thus we are left with 

K •• lr 

d~' 1,,[1 •• _ I •• ](e- 2
" - 1) 

o r 

(52) 

(53) 

(54) 

In going from (53) to (54) we extended the upper 
limits of one of the integrals to infinity, since it is 
convergent. In the second integral we have to extract 
the term that behaves like a constant. The second 
integral can be done exactly; however, it is easier 
to obtain its asymptotic behavior indirectly. We use 
the integral20 

l ' dt 
o J .(kt)J ,,(kt) t 

kz 
2 2 {J"+1(kz)J.(kz) - Jikz)J.+1(kz)} p. -II 

+ J,,(kz)J.(kz) +2 . (p. - II ) 

+ '" f .. 2 2)sm -2-11' . p. II lI'v-o - II 
(55) 

Letting p. approach II in this integral gives us the 
additional result 

1, dt [J.(kt)]2 '" 1.. 
o t 211 

(56) 

If we let k = eJir, we can extract immediately 
the terms that will behave as a constant in the second 
integral of (54). The result is 

l' dr' 2 e- i .... e- i ' .... 

-, (I •• - I •• ) '" -2- + -2-
o r ~ ~ 

4e- i !l( •• +.,l,,) sm' 1[( ) ] '2 111 - 11211' 

-i"'.1 -irlo'. -;P...· 
= e __ + e __ _ e smwlI'. (57) 

2111 2112 'TrOOP 

Since this expression is to be multiplied by a, we 
set a equal to zero everywhere within it. The result is 

l
r dr' 2 -lie-i." 

o 7 [I.. - I,.] '" l - 1 ' II> 1. (58) 

The other integral in (54) can be done exactly by 
use of the formula21 

fa'" x- i I,,(x)I}.(x)K,(2x) dx 

= _1 __ r.!!..!(p.,,-=,:+,--:-X_+,:-:-=I"-::) r--,!,-,!(p.,---:-:-+_~...:!.) 
2,,+}'+2 r(p. + l)r(X + 1) 

X F (X + p. + 1 p. + X p. + X + 1 
4a 2 '2' 2 ' 

p.+X ) X -2- + 1; p. + 1, X + 1, p. + X + 1; 1 ,(59) 

where .,F q represents a generalized hypergeometric 
function. To zero order in a, the above integral 
leads to 

l "'dr e-2'[I _ I ]2 = 2 {r(1I - !) aF2(1I - !, II - !, II - 1; II, 211 - 1; 1) 
o r, " " ;t 22'(11 - l)r(lI) 

+ r(1I + !) aF2(1I + !, II + !, II + 1; II + 2, 211 + 3; 1) 
22>+4(11 + l)r(lI+ 2) , . 

_ r(1I + !) aF2(1I + i, II + 1, II + 1; II + 2, 211 + 1; I)} == N(II) 
22.+1r(1I + 2) , 

II> 1. (60) 

Unfortunately we are unable to reduce the aF2 
functions any further. For II = 1 we can use (59), 
only we must be more careful. The term involving 
r.. will dominate. For II = 1, III = H -a)!, and 
(59) gives 

with (40) to give the lowest-order coeffiCient of 
e -P I pi in ,.p., 

1'" dp -2P[I ( )]2 1 11" - N(I) (61) 
o -;e ,(-all P = 2 (-a)' = . 

We can now combine (50), (58), and (60) together 
,10 See Ref. 17, p. 255. 

" -iA. 
T.(P, q, E = 0) = -'--2 11' II 

a -i,,, + all _ .. " + aN (II) 
8(112 - 1) e 811(112 _ 1) e 811 ' 

(1 - aD(v» X 

, -ai,A.N(II) 
" = , '1r

2 16J/" ' 
" ' ,., \ \ . -) , 

II> 1. (62) 

21 See Ref. 18, p. 140. 
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We have approximated sin W1(' by 

sin W7r ~ -a[1('/8(v2 
- 1)]. 

Thus we see that the contribution from the counter­
term cancels the V = 0 term, as it must. If v = 1, 
we use instead of (62) 

i(-a1(')i Ai 
T1(p, q, E = 0) = 2(21('/[1 _ aD (1)] (63) 

The v = 1 term is then of order (-a)!, while all 
the other terms are of order a. This fact makes 
our potential seem all the more physical, for in a 
true At/>' theory there would be a contact inter­
action term of order (-a)i which would contribute 
only to v = 1. Presumably, it would be introduced 
to cancel out the (_a)i behavior found here and 
leave a term proportional to a. More directly, the 
(-a)i dependence comes from the difference in 
behavior of (27) between v identically one and any 
other integer. 

It is interesting to ask where the denominator 
of (62) vanishes to give a bound state. As v becomes 
infinite, D(v) vanishes as v -3 In v, so there are no 
bound states in this limit for small a. At the other 
extreme there is a pole for v = 1 but not for any 
larger value due to our restriction -4 < a < O. 
Numerically from (50) we see that the pole QCcurs 
at a = -1.1. 

In this section we have treated two problems. 
One is exactly soluble but shows no possibility of 
bound states. The other model, using a more 
realistic potential, illustrates many of the phenomena 
expected in a physical theory. It also provides many 
of the problems encountered in handling a physical 
situation. The practical utility of extracting the 
T m~trix as the coefficient of asymptotic behavior 
is clearly demonstrated. 

In conclusion we remark that the singular nature 
of th~ potential in a Bethe-Salpeter equation is not 
an ,:obstacle to solution if the singularity is of the 
form r-'. We have shown how to remove the sin­
gularity for the scattering problem at zero energy. 
This same method will work for physical e~ergies 
if the wavefunction is again expanded in four­
dimensional spherical harmonics. The major stumb­
ling block to effective utlization of the Bethe-Salpeter 
equation in physical problems remains the lack of 
spherical symmetry due to energy factors. We have 
discussed the two-particle, free Green's function 
for physical energies; hopefully, a knowledge of the 
asymptotic properties of the configuration-space 
amplitude and its relation to the T matrix Will 
provide a starting point for an attack on' physical 
problems. 
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APPENDIX A. SPECTRAL REPRESENTATION 
OF THE GREEN'S FUNCTION 

Starting from (4), we write 

X [(k + 1E)2 - m2 + iE][(k - 1E)2 - m2 + if] 
(AI) 

The integrand, considered as a function of ko. has 
poles at 

For Xo - x~ > 0 the contour of integration may be 
closed in the upper half ko plane with the result 

-i 1 
G(x, x') = (21(')2 Er 

X 1" k dk exp {-i[k·z - t(k2 + m2)i]} 
o 2E[(e + m2)]1 

{ 
e-iiBI eiiB1} 

X E + 2(k2 + m2)t + E _ 2(e + m2)t , (A3) 

where z = x - x' and t = Xo - x~. Next the angular 
integrations are done to give 

-i 1 
G(x, x') = (21(')2 Er 

X 1 .. k dk sin kr exp [-it(k2 + m2)i] 
o W + m2)1 E2 - 4(k2 + m2

) 

X {2E cos (1Et) + 4i(k2 + m2)i sin C1Et)}. (A4) 

Here /z/ has been written as r. We now change 
variables to 8 = E2 and 8' = 4(e + m2

) to get 
a form for G(x, x') that better displays its analyticity 
properties, 

, - ~ .! 1'" ~ . [(8' - 4m
2
). ] G(x, x ) - (2 )2 I sm 2 r 1(' r 4 .. ,8 - 8 

(A5) 

We see from this equation that G(x, x') has a cut 
extending from 4m2 to infinity. There is also an 
apparent cut, due to square roots, that extends 
from minus infinity to zero. However, the cosine 
is an even function so that the square root in its 
argument does not lead to a cut. The presence of 
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8-1 cancels the cut coming from the argument of 
the sine function. 

APPENDIX B. CALCULATION OF THE ASYMPTOTIC 
PROPERTIES OF G(x, x') 

We start by deriving (8) from (4). For simplicity, 
we redefine E by a factor of two and let z = x - x' 
and X = Izl. If the denominators in the integrand 
of (4) are combined by Feynman parametrization, 
we have 

G(x, x') = 2(i'lli fl da J d4

k 

x [e + 2k.Ea + E2 -m 2]2 (B1) 

If the origin of integration is shifted in the standard 
way to remove the k· E term in the denominator, 
the ko contour may be rotated to the imaginary axis 
provided E2 < m2. At the same time we rotate Zo 

to give a Euclidean metric in configuration space. 
The result of these operations is 

(B2) 

If e,k" is expanded in four-dimensional spherical 
harmonics,l1 only the first term will contribute, 
and it is proportional to JI(kX), 

I i fl E· ... 1 
G(x, x) = 2(211")2 -I dae X 

1'" k2 dkJI(kX) 
X 0 [k2 + E2a2 _ E2 + m2]2' (B3) 

When the argument of Ko is imaginary, we use 
a small positive imaginary part on E2 to determine 
the correct continuation of Ko to the Hankel function 
of the first kind. We write 

Ko[X(E2a2 
- p2)]i = Ko[ _iX(P2 - EV)i] 

= !7riH~I)[X(P2 - E 2
(

2)i], (B6) 

where p2 = E2 - m2 > 0 and a < piE < 1. The 
integral I can now be split into two parts, 

IE> ... = II + 12 

= II da[eE'U + e-E'U ]Ko[X(E2a2 
_ p2)i] 

pIE 

(B7) 

The asymptotic form of I I is obtained by making 
the change of variable from a to x where a = 

xlEX + pIE. Then II becomes 

eE •• (p/E) e-E .• (p/E) 

EX 10 + EX lb' (B8) 

I b can again be divided into two parts, 

Ib = (1'" - f'" ) dxe-(E"/E~hKo[(x(x + 2pX»I]. 
o (E-p)~ 

The first part can be evaluated asymptotically by 
use of the formula23 

The final k integration may now be done by referring Ik(a, fJ) = 1'" x-k-i(a + x)He-~%Ko[(x(x + a»!] dx 
to any of a number of references on Bessel func-
tions. 22 The result is 

G(x, x') = [i/4(211")2]I, (B4) 
where 

larg al < 11", Re fJ > -1, Re k < !, 
z~ = !a(f1 ± (f12 - 1)i]!. 

(B5) For the first part of I b we want 

(B9) 

Equation (B4) is the form given in (8). 
We now consider the integral I in detail. There 

are three distinct values of E for which this integral 
must be evaluated. For E greater than m, the 
argument of Ko can become imaginary. For E less 
than m the argument is always real and positive; 
the asymptotic form of Ko can then be used under 
the integral. Finally there is the special case of 
E = m which must be evaluated separately. 

U See Ref. 17, p. 330. 

-lim lim ",QfJ Ik,o(a, fJ) = ~. (BlO) 
k-i «_CD V a 

This limit is easily found by using the simple 
asymptotic form of the Whitaker functions Wk ,O.24 

The first part of Ibis then given by 2/2pX. The 
second term can be evaluated by using the asymp-

23 See Ref. 18, p. 377. 
f4 W. Magnus and F. Oberhettinger, Formultl8 and Theo­

remsfoT the Special Functions of Mathematical Physics (Chelsea 
Publishing Company, New York, 1949), p. 89. 
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totic form of Ko in the integrand and using the 
general formula 

J.
b eO(s) {I 

B fex) dx = f(x)g' (x) 

-I- f'(x)g'(x) + f(x)g"(x) + ... }eO(z> I:, 
r(x)g'3(x) ~ 

(Bll) 

where we have simply integrated by parts. It is 
assumed that I(x) has no zeros in the range of 
integration. This formula shows us immediately 
that the second part of I b vanishes exponentially 
relative to the first and, hence, can be neglected. 

In the limit in which we are working I b = lB. 
Therefore, we find the asymptotic form of lito be 

II r-.J (2/pE",,2) cosh (E ·zp/E). (BI2) 

This form will be valid for all E·z = EA cos (3. 
Turning now to 12 , we set a = p cos O/E and look 
at the integral 

I = rtp-1"s· o dOeB·'(PIE) coaSH(l)(pAsin 0) 
2 2Eo ill 0 

= !iP.1" sin 0 dO E 0 

the limiting form of (BI5) is given by 

1 .. Jo(zsin t) sin (2n + l)t dt '" (-1)" 2 sinz , (BI8) 
o z 

and that of (BI6) by 

1 .. Yo(Z sin t) sin (2n + l)t dt '" (-It 2 cos z. (BI9) 
o z 

Using (BI4), (BI8), and (BIg) in (BI3), we now have 

I '" 21Tp {I (EZP) e
ip

). 

2 E 0 E pX 

+ ~ I2 .. (E./ 1!.)) eip

). [(-1)" _ (_1)"-1] 
"al \jjj pX 

= 21Te
ip

). {I (E .zP) 
EX 0 E 

+ 2 ~ e-1)"I2 .. (E.ZP)}. (B20) 
,,-I \ E 

From (BI4) we see that the series in (B20) is equal 
to unity. Therefore, we have the simple result 

12 '" 21T(e iP'/EX). (B21) 

Adding II and 12 , we have the final result 

X cosh [E·z(p/E) cos O]Hcill (PXsin 0). eip
). 2 (E .zP) 

(BI3) IE>,. = 21T EX + pEX2 cosh E . (B22) 

We use the following identities 13 : 

cosh (y cos 0) = Io(Y) + 2 ~ 12"ey) cos 2nO, 
"al 

sin 0 cos 2nO 

= ![sin (2n + 1)0 - sin (2n - 1)0], 

H~ll(y) = Jo(Y) + iYo(y), 

and the definite integrals2S 

i" Jo(z sin t) sin (2n + l)t dt 

= 1T(-I)"J-1(2"+1l(~)J1(2"+1l(~)' 

fo" Yo(z sin t) sin (2n + l)t dt 

= (-I)"[J!(21l+1>(-2
z
) aa J'(-2z) I 

/I .--1(2 .. +1) 

+ J -1 (2,,+ 1> (-2z) aa J'(-2Z) I ] 
/I _--!(2 .. +1> 

(BI4) 

(BI5) 

(BI6) 

to evaluate 12 • If the asymptotic form of J .. (z) is 
given by 13 

J .. (z),....., (2/1TZ)t cos (z - V - !n1T), (BI7) 
---

16 See Ref. 17, p. 294. 

Next we evaluate the integral I for E = m; this 
problem is considerably simpler than that above, 

I E _,. = ill dOl earn). e08 flKo(mXOl) 

= i'" dOl [earn). cos fl + e- am). eos fl]Ko(mXa) (B23) 

- f'" d0l2 cosh (OlmX cos (3)Ko(mXOl) 

== II - 12 • (B24) 

II may be done exactly,26 

2i 2 
II = mX(cos2 (3 - l)! = mX sin {3 (B25) 

The integral 12 can be evaluated by use of the 
asymptotic form of Ko and (B11); it is seen to 
vanish exponentially for cos {3 < 1, and as A -! for 
Icos,81 = 1. Therefore, we have the result 

I E _,. = 2/mXsin,8. (B26) 

For E < m the argument of Ko never vanishes; 
accordingly, the asymptotic form may be used in 
the integral and we havel3 

26 See Ref. 18, Vol. I, p. 197. 
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(B27) 

The free solutions (V = 0) of this equation are 
h(kr) and hi1) (kr) where j, and h?) are the spherical 
Bessel and Hankel functions, respectively. The, solu­
tion to (02) can be written as 

This integral can be evaluated by use of (Bll), 
which provides a series of descending powers in A, wl(r) = Adl(kr) + A 2M1)(kr) 

( 7r)1 x{ me
E

" + J r2 drG1(r, r') V(r')w/(r'), (04) 
18 <", ro..I 2A e-

m 

mtEA(m cos (3 - E) 

me-E', } where 
- mtEA(m cos (3 + E) Gl(r, r') = -ikh(kr<W/'(kr». 

= (2:J1 
;;.. e-

mX 

X {m cos {3 sinh (EA cos (3) + E ~osh (EA cos (3)}. 
m2 cos2 {3 - E 

(B28) 

This value of I, like the earlier ones, is valid for 
all values of Icos {31 :$ 1. Equation (B28) can be 
continued to E = 0 where it gives the proper 
behavior as read directly from (B5). 

We summarize the results derived in this appendix: 

271"e;Px 2 
18 >".""'" EA + pEr2 cosh (PA cos (3), 

l E _", ,....., 2/mA sin {3, 

( 7r )1 -mX m 
10 <E<",""'" 2mA e EA 

(B29a) 

(B29b) 

X m cos {3 sinh (EA cos (3) + E cosh (EA cos (3) 
m2 cos2 {3 - E2 , 

(B29 c) 

l E _ o ,....., 2C:J
1
e-mx • (B29d) 

APPENDIX C. NONRELATIVISTIC SCATTERING 
WITH A SINGULAR POTENTIAL 

Let us consider the partial-wave radial Schrodinger 
equation with a singular (r -2) potential, 

[~ + ~ ~ + k2 _ l(l -t l)]w/(r) 
dr2 rdr r 

= [~ + VCr) ]w/(r). (01) 

VCr) is assumed to vanish faster than r- 1 as r goes 
to infinity. This equation can be rewritten in the form 

[~;2 + ~ ~r + e - i(l ;- 1) ]wl(r) = V(r)wl(r), (02) 

where 
l(l + 1) = l(l + 1) + a, 

and 

- [ 2 a]! 1 = -! + (l +!) - 4 . (03) 

To determine Al and A2 we require thatw,(r) be 
regular at the origin. Since ht1) (x) ~ x-1- i , A2 must 
be zero. Then by using the very general relations 

w(x) ,....., eik
.", + (eikr /kr)f(8, r,o) 

or 

wk) ,....., Adl(kr) + (eikr /kr)f" (05) 

we see that the incoming spherical wave part of 
W, (r) is unmodified by the potential. From the well 
known asymptotic form of jl(X)/3 

we see that the coefficient of e- ikr /kr in the asymp­
totic form of w/(r) is 

(06) 

Oomparison of (06) with (04) provides the relation 

1A ei<I+ 1l i .. - A ;(/+1)ir 
2 1 - Ie . 

Therefore, the solution to (02) is given by 

w/(r) = A leW
-

1Jtrh(kr) 

(07) 

+ J r2 dr Gl(r, r')V(r')w,(r'). (08) 

This equation is now of the Fredholm type. 
We can now extract the exact scattering amplitude 

for a r-2 potential as the coefficient of eikr /kr in 
(08) with VCr) = O. The result is just 

f, = _!(iAI)eilir(e-Tri - e- il .. ), (09) 

where we have subtracted off the outgoing Pfl,rt of 
the plane wave. Now, if we had solved the problem 
for negative energy (k = i}J.), Eq. (04) would have 
been replaced by 

wf(r) = A~ilCJJ.r) + A~klCJJ.r) 

+ J r2 dr Gt(r, r') V(r')'I'f(r'), (010) 

where i,(x) and k,(x) denote modified spherical 
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Bessel functions of the first and second kind, 

Gfer,r') = -(2/J!7r)iT(p.r<)kT(p.r». (C11) 

To choose A ~ and A~ we insist on regularity at the 
origin and the matching of the growing exponential 
of wHr) with that from e-l',z,21 

'" 
e-I'z oo.s = L Afi,(p.r)Y'm(Uz )' 

1-0 

The equation for negative energy corresponding 
to (C5) is 

(CI2) 

Since the growing behavior of i , and iT is the same, 
we have immediately A~ = Af and A~ = O. When 
we try to determine the scattering amplitude in 
this case, we see there is an ambiguity since28 

i j r-..J (I/x)[eZ 
- e±(lr"e-

z
]. (CI3) 

This asymptotic behavior gives an if of the form 

if = -Af[e±Tr. - e
tlr

']. (CI4) 

By a comparison with (C9) we see that the minus 
sign is the correct choice for the phase factor. This 
fact can be understood by reference to the region 
of validity for the asymptotic forms in (CI3), 

I.(z) r-..J [i/(27rZ)!][e" F(z) 

+ e-·-Z(p+!lr'F(_z)], JzJ--7 ex> , 

-(2 + E)!7r < arg z < (2 - E)!7r, E = ±l. 
(CI5) 

Since in the nonrelativistic case we know that we 
wish to be able to continue our results to positive 
energy, we want I.(e-'i"z) to be identified with J.(z). 
This means that we must choose that value of E in 
(CI5) which makes the asymptotic form valid for 

27 This result is obtained by continuing jl(x) in the usual 
expansion of e'P.s by the PI'escription of Ref. 16. 

28 See for example, G. N. Watson, Theory of Bessel Func­
tions (Cambridge University PreBB, London, 1948), 2nd ed., 
pp. 201-203. Historically, this appears to be the first Stokes' 
phenomenon discovered [Sir G. G. Stokes, Memoirs and 
Scientific Correspondence. I (Cambridge University Press, 
London, 1907), p. 62J. 

arg z = -i7r. Therefore E = +1, and the choice 
of the minus sign in (CI4) is justified. 

In the relativistic problem we make the same 
choice; we can either argue by analogy with the 
nonrelativistic result or state that the correct form 
in either case is given by picking the correct con­
tinuation in the asymptotic expansion of e'P·s. If we 
wish the asymptotic expansion for pure imaginary 
p to give that for real p on substitution of e-'i"p 
for p, we are required to choose the negative phase 
factor for I p • 

APPENDIX D 

In this appendix we calculate the integral in (48) 
for 1/ = 0, 

I = 1'" dx K o(x)Io(x)(e-2S 
- 1). (DI) 

o x 

To this end we use the identity29 

1'" Jo(xt) 
Ko(x)Io(x) = 0 (t2 + 4)\ dt. (D2) 

Substituting this into (DI), we can now carry out 
the x integration30 

1'" d Jo(xt) ( -2z 1) l' 1"" J .(xt) ( -b 1) x-- e - = 1m -- e -
o X .~oo X 

. [1 [ t JP IJ 
= Ip~ -; 2 + (e + 4)t --; 

= In L + (/ + 4)! 1 (D3) 

Putting (D3) into (D2), we find 13 

1'" dt [ t ] 
I = 0 (t2 + 4)\ In 2 + (t2 + 4)\ 

1'" (inh) '" 
= 0 dyln 1 ~ c!y = 21 dzln(tanhz) 

11 Inw 7r' = 2 adw = --. 
01 - w 4 

(D4) 
----

It See Ref. 17, p. 330. 
10 See Ref. 18, Vol. I, pp. 182,326. 
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The "canonical" relativistic kinematics is discussed for n-particle systems. Our aim is to derive 
the formulas in as simple and symmetrical a way as possible and thus to avoid the extra complications 
arising for n > 2 in the usual stepwise generalization of the two-particle method. At first we derive 
the canonical form of the infinitesimal operators (N, M) in a highly symmetrical form. It is then 
shown that though the restrictions imposed by the condition that our states be also energy eigenstates 
compel us to sacrifice a part of the symmetry and simplicity of the formulas, we can indeed include 
the effect of the spins of the component particle in a completely symmetric way. This reduces to a 
minimum the additional complications introduced when the component particles have nonzero spins. 
The corresponding, relatively simple, generalized (C-G) coefficients connecting the canonical and 
the direct-product states are calculated. It is shown that the use of "spinor" representation for the 
individual particles simplifies the deductions considerably. Explicit results are given usually for n = 3 
only, since the generalization to n > 3 introduces no essentially new features. 

I. INTRODUCTION 

IN two previous articles!·2 we have discussed in 
detail certain aspects of "canonical" relativistic 

kinematics. In those articles we mostly discussed 
(with reference to the canonical representation) the 
form of the wave equation, the "position" and spin 
operators and transformation properties for the one­
particle case. In what follows our aim is to extend 
our discussion to many-particle systems, consider­
ing, however, only noninteracting particles of non­
zero rest mass. The notation used will closely follow 
that of Refs. 1 and 2. 

Let there be a system of n particles (free). The 
infinitesimal operators of the Poincare group are, 
in the direct-product representation, 

.. 
P = LPi' 

N = _pOX - [l/(PO + m)]P x S, 

M = -PxX + S. 
(1.3) 

When S, X may be considered, respectively, as the 
canonical spin and center-of-mass (c.m.) operators 
of the composite system. This corresponds to a 
"canonical" separation of the motion of the c.m., 
i.e., the motion of the system as a whole from the 
internal motions about the C.m. (This in turn en­
ables us, for example, to simplify the S-matrix ele­
ments by separating out the dependence on the 
quantum numbers relating to the c.m., i.e., those 
which are conserved in the scattering process). 
Moreover the canonical form of (1.3) ensures! that 
the states belonging to the irreducible representation 
(m2 

= p2, S2) will transform under the Poincare 
group according to the Wigner formula 

i-I 

.. .. (1.1) (U(a, A)cp)(P) 

M == (N,M) L Mi - L (Ni' Mi), 
i-I i-I 

where 

-ip~(a/apk) + ni, (1.2) 
-iPi Xa/api + {i' 

The explicit form of the intrinsic part (ni, {i) will 
depend on the representation used for the individual 
particles (e.g., "spinor" or "canonical" representa­
tion). This point will be discussed in Sec. II B. 

Our aim is to reduce M to the canonical form by 
a suitable transformation of variables, namely to 
express (N, M) as 

1 A. Chakrabarti, J. Math. Phys. 4, 1215 (1963). 
I A. Cbakrabarti, J. Math. Phys. 4, 1223 (1963). 

922 

= exp iP·aXJ(S)(Ap·A·A;~)cp(P') 

where 

A'P' = P, 

[or equivalently, 

(1.4) 

U(a, A) IP) = exp iAP·aXJ(S)(AAp·A·A;l) IA·P)]. 

It is to be noted that (1.3) implies2 

X = - };o [ N + m(PO 1+ m) P x W ] ' (1.5) 

where 

W = -P·M* = (P·M, pOM - P xN). 

In fact (1.3) and (1.5) are equivalent, and adopting 
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the above definition of the c.m. at once reduces 
(N, M) to the canonical form with 

S = M + P x X = ~ (w - P wo) (1.6) 
m pO+m ' 

implying 

Thus our real task reduces to the elucidation of 
the structure of S. In order that we may have 
sufficient quantum numbers for a complete classifi­
cation of the canonical states belonging to (m2

, 8\ 
we have to express S as a sum of separate (mutually 
commuting) angular momentum operators which, 
coupled together, give the total spin. These opera­
tors must, in order that such a description be pos­
sible, commute also with other operators necessary 
completing the description. Moreover, it is desirable 
that they each possess a clear physical significance 
and the maximum possible simplicity. 

The case n = 2 has been treated by several 
authors.3

•
4 For n ~ 3, one method is to proceed 

step by step, namely combine first two particles 
and then a third with the c.m. of the first two and 
so on.3

•
5 But this makes the structure of S and the 

"internal operators" extremely complicated. 
This is particularly the case when the component 

particles have nonzero spins. [The final result for 
the orbital or c.m. part must always be that implied 
by (1.5).] Our aim is to introduce the maximum 
amount of symmetry and simplicity in the struc­
ture of S. 

For this purpose we introduce a change of varia­
bles, at first in a rather general form. 

n. CHANGE OF VARIABLES 

A. Particles of Zero Spin 

Let us consider a system of n spinless particles, 
so that 

" 
N = -i L p~(a/api)' 

i-I (2.1) 
" M = -i L Pi xa/api' 

i-I 

Let 

~, = p, - A'(P1 + ... + p,,), (2.2) 

where for the moment the structure of the A'S are 

a B. Barsella and E. Fabri, Phys. Rev. 128, 451 (1962). 
4 A. J. Macfarlane, J. Math. Phys. 4, 490 (1963). 
6 A. J. Macfarlane, Rev. Mod. Phys. 34, 41 (1962). 

left undetermined except for the constraint 

(2.3) 

which implies 

" 
L~' = 0, (2.4) 
i-I 

so that, writing 

(2.5) 

we can take the set (~1' '" , ~"-1) as mutually 
independent. 

Let us now make the change of variables 

(P1' P2, '" ,p,,) ~ (P, ~1' ... '~"-1)' (2.6) 

We have 

~ = (ap).~ + I: (a~;).~ (2.7) 
ap, api ap ;-1 ap, a~;' 

where symbolically 

(ap/ap,t" == apm/ap~, etc. (2.8) 

Thus 

a a a ,,-1 { a -=-+-- L A'-ap, ap a~i i-1 'a~; 

+ (aA;)(p.~)} 
ap, a~; (i = 1, ... ,n - 1) (2.9) 

a!" = v~ - % {A; v!; + (:~:)(P·v!)}· 
This gives 

" a { a f.; p, x api = P x ap + 
,,-1 (a) - i L (MA,.) p.- , 
;-1 a~; 

(2.10) 

where 

M~ . ~ VA; 
1\; == -~ £.oJ Pi x-· 

i-1 ap, (2.11) 

(2.12) 

where 

N~ . ~ ° aA; 
1\; == -~ £.oJ Pi -. ,-1 ap, (2.13) 



                                                                                                                                    

924 A. CHAKRABARTI 

From (2.10) and (2.11) we see that we have only 
to take the A's to be invariant under purely spatial 
rotations (MA; = 0) to have 

" 0 0 n-1 0 L Pi X- = P X- + L 1':; x-, (2.14) 
i-I &Pi oP ;-1 &1':; 

For further restrictions on the A's we examine (2.12). 
In the nonrelativistic case it suffices to choose the 
A;'s to be constants. In the relativistic case we note 
that, if the A's are supposed not only to be rotation­
but Lorentz-invariant as well (NA; = 0), then (using 
primes to distinguish this particular choice) 

.~ 0 0 pO 0 n-1 ,0 0 
f.:t Pi &PI = &P + f;t'll'; &1':; , 

(2.15) 

as well as 

where 

'II'~0 = p~ _ AWo, or 'II'~ = p, - MP. (2.16) 

This leaves the A's yet to some extent undeter­
mined which enables us to impose the condition 

P''II'~ = 0, (2.17) 

giving 

(2.18) 

This mode of separation of the c.m. motion (re­
ducing for n = 2 to that employed by Wightman6

) 

has a certain simplicity. But, evidently, this does 
not give us the canonical form and hence does not 
lead to the associated desirable properties. 

Comparing (1.3), (2.12), and (2.14), we find that 
the required condition for a canonical splitting is 

pO ~ m P X (1':; x a!) 
= (p~ - A;pO) ~ - i(NA;)(P'~)' (2.19) 

01':; 01':; 

The solution is, as may easily be verified, 

Aj = (p.p; + mp~)/m(PO + m). (2.20) 

This means that, for the canonical separation, 

1':, = PI - [(P'PI + mp~)/m(PO + m)]P, (2.21) 

which is just the space part of Ap' Pi or p, trans­
formed to the c.m. system. This gives the clear 

• A. S. Wightman, "L'invanance dans la mecamque 
relativiete," Ecole d'ete de Physique Theorique, lee Houches, 
(Hermann & Cie., Paris, 1960). 

physical significance, we might have expected. (In 
Appendix II we collect certain formulas relating to 
the '11'''8 and 'II"s). 

Thus for n spinless particles we can write in (1.3) 

,.-1 & 
S = -i L 1':; x- , (2.22) 

;-1 01':; 

and 

M = -2P x%P + S, 

N = -iPO(%P) - [1/(pO + m)]P)( S, (2.23) 

where the general properties of the canonical repre­
sentation allows us to write down directly 

-i &; = -~o [ N + m(po1+ m) P xW 1 (2.24) 

The actual expressions of the o/01':;'S are quite 
complicated but may be evaluated in a straight­
forward manner from (2.9) (see Appendix I). 

The total operator S is of course the same as 
that obtained by proceeding stepwise. Our result 
only expresses the same in a more symmetric and 
simple way involving only one Lorentz transforma­
tion to the c.m. frame. The operator 1':,. corre­
sponding to only one particle (arbitrary) has been 
allowed a special role by being eliminated. We have 
established that this somewhat unconventional 
choice does lead to a canonical form. Unfortunately, 
this attractive choice encounters a certain difficulty, 
which we discuss later (Sec. III). 

B. Particles of Nonzero Spin 

When the component particles have spin, some 
additional complications arise. In this case, since 
there are the additional terms (nl, {I) and, in order to 
assure the canonical form, we always define the c.m. 
operator as in (1.5), we have to add to -i(%P), 
as evaluated in II A (and termed XOr henceforth), 
the term 

.. 1 [1 ] 
- ~ po n, + m(PO + m) P X (P{i - P XR.) 

(2.25) 

1 [ 1 0 ] -po n + m(PO + m) Pxg> {- PXn) , 

(2.26) 
where 

.. 
(n, {) = L (R" {.). ,-I 
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At this stage we have to decide what representation 
to employ for the component particles. If we use 
the canonical representation throughout, then 

n, = -[I/(P~ + m,)]Pi x {,. (2.27) 

But instead of doing so, let us at first suppose 
that we are using "spinor" representation7

•
8 for the 

component particles. In this case (ni, {,) transforms 
as an antisymmetric tensor and commutes with 
8jaPi (as well as, of course, with Pi)' None of these 
properties are true for the canonical repre8entation 
when n, is given by (2.27). 

Thus the use of spinor representations for the 
particles i( = 1, .,. , n) enables us to write, accord­
ing to the well-known transformation laws for anti­
symmetric tensors,9 for {HOl (or {. transformed to 
the c.m. frame), 

Px(px{.) PXn, 
{.(O) = {. - mCPo + m) - --:;;- (2.28) 

= \. + P xX};" (2.29) 

from (2.26). From (2.29) it follows that we can write 

M = -P xX + Sor + S};, (2.30) 

where. 

.. -1 8 
Sor = -i :L: 1C; x-;-- , 

';-1 v1C; 
.. 

S}; = :L: (HO) = {CO), 

(2.31) 

(2.32) 

(2.33) 

The choice of definition of X automatically gives us 

N = _pOX - [1/(PO + m)]P x (Sor + Sz). (2.34) 

If, on the other hand, we use canonical representa­
tion for the particles "i" [and hence (2.27)], the 
rhs of (2.28) and (2.29) no longer has the simple 
physical significance discussed above, the trans­
formation law for the canonical {, being quite dif­
ferent. l

•
8

•
4 

As has been discussed before, l the spinor repre­
sentation can be transformed to the canonical one 
through a similarity transformation by the operator 
Q(p, A,,), where Q(p, A) is the matrix of transforma­
tion of the spinor wavefunctions under the opera­
tion A. 

Now, suppose we transform both sides of (2.30) 

1 V: Bargm!mn and E. Wigner, Proc. Nat!. Acad. Sci. 
U. S. 34~ 211 (1948). 

8 H. Joos, Fortschr. Physik. 10, 65 (1962). . 
DC. Moller, Theory of Relativity (Clarendon Press, Oxford, 

England, 1955). 

and (2.34) by the operator 
.. 
II Q(P" Av,)· (2.35) 
i-I 

On the lhs, Nand M will be converted, respectively, 
to the sums of the N/s and M/s in the canonical 
form. On the rhs, the a's involved in the definitions 
of X and the 8/81C/S will now have their canonical 
significance, Le., for nonzero spins they will have 
complicated nonlocal structures. And as for Sz, we 
find that this is obtained in the form 

.. 
(S};)" === :L: ({HO»" (2.36) 

i-I 

where ({HO»tr = Q'{;CO)Q~l is, in general, quite 
different from ({it.) (0» namely the canonical {'s 
transformed according to appropriate law to the 
c.m. system. Barsella and Fabri8 find (for n = 2) 
that in order to express S.l: as the sum of the com­
ponent canonical rs reduced to the c.m. system, 
they have to modify the definition of the 1C/S by 
introducing spin-dependent terms. However, even 
for this simplest case (n = 2), these terms are ex­
tremely complicated. (In fact, they do not attempt 
an explicit evaluation.) 

If our starting point itself is the c.m. frame 
(p = 0), then of course (2.36) becomes equivalent to 

.. 
:L: ({, h)(O)' 
i-t 

III. CONSEQUENCES OF THE RESTRICTION OF 
ENERGY CONSERVATION 

We have 

" 
po = :L: (p~ + m:)i (3.1) 

= [p2 + {~ (1C: + m;)!YT. (3.2) 

po commutes both with - P x X and S as a conse­
quence of the canonical definition (1.5) of X im­
plying 

. -i[X, PO] = Pjpo. (3.3) 

But the presence of the term (1C! + m!) in (3.2), 
where 

"-1 

1C .. = - E 1Cj, 
i-I 

prevents the component terms1Ci x (8/01Ci) from com­
muting separately with pO. Thus if we want our 
canonical states to correspond to definite energy 
values, we are forced to abandon the simple sym-
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metric form of Sor given in (2.32), since, for a com­
plete enumeration of the states, the quantum num­
ber corresponding to the total spin is not sufficient, 
but we have to introduce subsidiary quantum 
numbers specifying the mode of coupling adopted 
to construct the total spin. 

For n = 2, of course, there is no problem (since 
~2 = -~1 = ~, say). For n ;::: 3 one way to avoid 
the above-mentioned difficulty is to proceed by 
steps.a.s 

But, in our method of the derivation of the 
canonical forms of M and N, we have been able 
to separate out the contributions from the orbital 
and the spin parts of the component particles [as 
is indicated by the suffixes "Or" and "'2," respec­
tively, in (2.30), (2.34)]. Taking advantage of this 
fact, we can substitute a different equivalent expres­
sion for Sor alone, leaving 81) in its simple sym­
metrical form. 

Thus for n = 3 we may write 

Sor = -i(~, x a!1 + ~2 X a!J (3.4) 

= -i(~12 x a
d + ~(l2)3 x~) , 
~12 U~(l2)3 

(3.5) 

where 

(The equality of (3.4) and (3.5) is assured by the 
fact that the term - P x XOr is the same for both 
cases which, in tum, follows from the fact that N, 
M appear linearly in (1.5). This is of course the 
result one expects from a proper definition of the 
c.m.] 

Since, in terms of these new variables, 

pO = [P2 + {(~~2 + m~2)1 + (~~12)3 + m~)l} 2]i (3.6) 

where 

m12 = (~i2 + m~)t + (~~2 + m;)l, (3.7) 

it may easily be seen both the terms on the rhs 
of (3.5) commute with po. 

Thus, we may write, for n = 3, 

M = -P xX - i(~12 x!> a + ~(12)3 x~) 
U~12 U~(12)3 

differs, in general, from ~(l2) by a rotation due to 
the fact that the pure Lorentz transformations do 
not form a group. 

It may be verified without difficulty that the 
terms {, (0) do, indeed, have all the required com­
mutation properties (see Appendix III), and hence 
the corresponding quantum numbers may be utilized, 
without any inconsistency, to classify the states. 

For n > 3 the required generalization raises no 
problem. 

The chief difference between our formula (3.8) 
(generalized for n > 3 if necessary) and that ob­
tained by usual method of combining both the 
spins and momenta by steps is, of course, the sym­
metrical form of S 1) in our case. But it should be 
noticed also that, though no longer expressed in a 
symmetrical form, the 1I"'S remain free of the spin 
matrices. In the other method the intermediate 
c.m. operator for each stage, in general, involves the 
corresponding spin operators [see the definition of 
X 1) in (2.25)], which in tum make the definition of 
the subsequent internal coordinates (~'s) extremely 
complicated. 

IV. THE GENERALIZED C-G COEFFICIENTS 

In this section we propose to derive the coeffi­
cients connecting the direct-product and canonical 
states. 

Let us consider the case n = 3. 
In order to express a state belonging to the ir­

reducible representation (p2, 82
) in terms of the 

direct-product states, we must do two things: 
(a) transform over to the new variables involved 

[see (3.8)]; and 
(b) couple together, according to the standard 

rules, the component angular momenta to obtain 
the total spin 8. 

Our procedure to this end will be analogous to 
that of Shirokov for the two-particle case.IO For 
maximum simplicity we adopt the rest system of 
reference, namely P = O. In this frame, M becomes 
equivalent to 

-i(~12 x !> (J + ~(l2)3 x~) 
U~12 U~(l2)a 

(3.8) where, now 

Another alternative form for SOr is obtained by 
starting the steps from the other end, so to say, 
i.e., making the substitution ~h ~2 ~ ~, ~o, where 
~ = (~1 + ~2) and 11"0 = A .. ,H, '11"1' In fact, the 
only difference between the two schemes is that ~o 

~(12)3 = PI + P2 = -Pa. 

Along with PO, P( =0), the five components of (4.1) 

10 Iu. M. Shirokov, Zh. Eksperim. i Teor. Fiz. 35, 1005-
(1958) [English transl.: Soviet Phys.-JETP 8, 703 (1959)}. 
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will furnish us with sufficient quantum numbers to 
classify the states completely. 

The expression (3.1) [and (4.1) as a special case] 
for M assures us two things: 

(a) the total angular momentum obtained by 
coupling the above five contributions does, indeed, 
represent the total spin S of the composite system 
in the rest frame. 

(b) the state thus constructed will transform 
under the Poincare group according to the standard 
canonical rulesl for the irreducible representation 
(P2, S2). 

In this particular system of reference, no trans­
formation is necessary to pass from {. to (HO) 

(i = 1,2,3). 
As for momenta, we note that, since an eigenstate 

of PI, P2, P3 is already an eigenstate of P, ~12, ~(12)3, 
we have only to convert the momentum eigenfunc­
tions into angular momentum ones. The required 
expansion coefficients are the spherical harmonics 

~/,,,,,(irI2)' ~/"m,,(ir(l2)3). (4.2) 

[The indices ir12, ir(l2)3 denote that we have to take 
the angular coordinates corresponding to the di­
rections of the unit vectors ir12, ir (12)3, respectively.] 
Apart from this, however, we have to introduce 
certain factors to ensure the orthonormality of 
canonical states. These factors arise from the 
Jacobian of transformation corresponding to the 
change of variables effected in the integrals over the 
momentum space and are related to the changes in 
the density of states. The evaluation of these factors 
is discussed in Appendix IV. For our case (n = 3), 
the required expression is 

P(!2)3 = 2m}2A-t(m~2' m~, m~)·2mi 
_l( 2 2 2) X A • m , m12, m3 , (4.3) 

where 

and 

A(a, b, c) = a2 + b2 + c2 
- 2(bc + ca + ab). 

It is shown (in Appendix IV) that this factor does 
indeed lead to correctly orthonormalized states. As 
a last step we now must couple together the five 
component angular momenta. The corresponding 
coupling coefficient may be written as 

(Ulu2uam'm" I t" t'lS2;) 

= (t'1t'2UIU2 I t'1t'2t"0")(r'r3U 'U
s I r'r3rU) 

X (l'l"m'm" I l'l"lm)(rlum I t'lS2;) , (4.4) 

where the rhs is expressed in terms of the usual 
C-G coefficients U/, 2: denoting the z components 
of t'. and S, respectively. Thus finally, we have 
[writing K = (m, 0)] 

IK, 2: em, 8]; t'tZ) = E 6(K - E Pi)PU2)3 
i 

X (0"10"20"Sm'm" I r'slS2:) , 

~/'m'(irI2)~/"""'(ir(l2l3)(:ir iPI, O"I[ml , SI])) , 
,-I 

(4.5) 

where the summation is to be taken over the in­
dices 0"1, U2, 0'3, m', m", and is supposed to include the 
integrations over the momenta as well. [On the lhs 
we have suppressed for the sake of brevity such 
additional quantum numbers as ml, S. (i = 1, 2, 3), 
l', l"]. 

Had we chosen an arbitrary frame of reference 
(instead of P = 0), the changes of variable {I ~ {HO) 

would have involved the matrices Qt' (PI, Ap) cor­
responding to the transformations of the component 
spinor wavefunctionsl instead of the rotation ma­
trices that arise5

•
lo when the canonical representa­

tion is used for the particles i. But, for the rest 
frame, in light of the discussion following (2.36) 
[namely equivalence of ({i(O»tr and ({I .. ) (0) for 
P = 0], we find that (4.1) holds for both the repre­
sentations for the particles i. Thus, (4.5) also holds 
for both the cases. Moreover, in both cases, once 
we have classified the states in anyone frame of 
reference (the rest frame, for example), the transi­
tion to any other frame presents no problem, since 
the canonical form of (N, M) guarantees the trans­
formation law (1.4). 

The generalization to cases n > 3 presents no 
difficulty. 

V. CONCLUSION 

To sum up we may say that though we have not 
been able to fully utilize, due to commutation diffi­
culties, the maximum amount of simplicity and sym­
metry in the formulas obtained at first [(2.30)], 
we have shown that at least a part of the attractive 
features may be retained, thus reducing the ad­
ditional complications due to the particle spins to 
a minimum. 

Recently Werlell has given a rather simple method 
for the relativistic many-body problem, using helicity 
couplings and quantum numbers related to moving 
axes. Compared to this latter one, our method 
(based on 1-8 coupling) has the two advantages 
that it gives a simple (canonical) transformation 

11 J. Werle, Nucl. Phys. 44, 579, 637 (1963). 
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law for the states constructed under Lorentz trans­
formation also (and not only for rotation), and 
that in the classification of the states the "inner" 
quantum numbers are, from the beginning, dis­
crete ones. 

We may add that once we have the generalized 
C-G coefficients, the applications to the S-matrix 
theory may be carried out as usual,6 and present 
no essentially new features. 

APPENDIX I 

In this section we briefly indicate the explicit 
evaluation of the operators a / a1':i appearing in (2.22). 
Let us consider, for the sake of simplicity, the case 
n = 3. (For n > 3 we may proceed exactly similarly.) 

Subtracting the last equation of (2.9) from the 
preceding ones, we have (for n = 3), writing 
aij == a/api - a/api, 

a13 = a!1 - (i)13A1)( p. a!J 

- (a13A2)(P, a!) , 
(I 1) 

Taking the scalar products of both sides of the 
above two equations with P, we get two equations 
in the two unknowns (p·a/a1':1), (p·a/a1':2)' These 
give directly 

(p,~) = [(1 - p·a23A2)(p·a13) 
a1':1 

+ (p. i)1SA2)(P, a23)] 

X [(1 - p·a23A2)(1 - P·i)13A1) 

- (p. a13A2)(p, i)23A2)r\ (I 2) 

and a similar equation for (p·a/a1':2) obtained by 
interchanging the indices 1 and 2. Now substituting 
these values of (p·a/a1':l), (p·a/a1':2) in (I 1) and 
transposing we get the desired result. 

For the particularly simple case of n = 2, Barsella 
and Fabri3 has given the explicit formula. 

APPENDIX II 

In this section we collect certain formulas con­
cerning the variables introduced in (2.15) and (2.21). 

First we note that 

(II 1) 

implying 

Thus 

1':~ = - (Pi - MP)2 = (P 'Pi)2 /P - P~ 

= A(P, P~, (P - Pi)2)/4P, 

where 

(II 2) 

(II 3) 

(II 4) 

A(a, b, c) = a2 + b2 + c2 
- 2(bc + ca + ab). 

For n = 2, (II 4) reduces to 

2,,(222)/4 22 1':1 = 1\ m , m1, m2 m = 1':2' (Il5) 

These results, of course, follow directly from the 
fact that Ap'Pi = 'll'i. Using the fact that Pi . = 
A;1 . 'll'i, we can express directly Pi as 

( 1':~ + m~)t 1':'P) 
Pi = 1':i + m + m(m + pO) P. (II 6) 

We may add that the 1':/s may be related to Ap 
in another way. 

Considering the 4-vector W for n spin-zero par­
ticles (or the contribution of the orbital parts only 
to W in the general case) we have [writing Xi = 
i(a/api)] 

.. 
W = - L: p~(PJp~ - P/pO

) XXi, (II 7) 
i-I 

where we note that the expression (PJp~ - P/Pg) 
is just the vector difference of the relativistic 3-
velocities corresponding to Pi and P, respectively. 
The following relation may be verified: 

(II 8) 

APPENDIX ill 

In this section we demonstrate that the operators 
{i (0) have all the required commutation properties 
[see the remark following (3.8)]. 

Let us consider the case n = 3, and write as in (3.8) 

M = -P xX - i(1':12 x!l a + 1':(12)3 X~) 
u1':12 u1':(12) 3 

+ ({HO) + {2(0) + {S(O» 

-PxX + So. + S,;. 
.(III 1) 

Now as a consequence of our choice of spinor repre­
sentation for the component particles, {i (0) contains 
only P, pO apart from (ni' {i) which commute with 
the orbital operators Pi, a/api' Thus evidently the 
{i (0) 's commute mutually and also separately with 
the 1':12 X a/1':12 and 1':(2)3 X a/01':(12)3, since' these 
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latter operators have been constructed to commute 
with pO as well as P. 

As a consequence of the general formulas for the 
canonical representation [(1.3), (1.5)] we have the 
result (easily verified) that -P x X commutes with 
S. Moreover, since the use of the spinorrepresentation 
for the component particles allows us to conclude 
by inspection that SOr commutes with both P x XOr 
(since nothing is changed in the expressions obtained 
for spin-zero particles) and P x X~ (since the latter 
involves only P, pO and the individual spin matrices), 
we have the stronger result 

[P xX, S~]_ = O. (III 2) 

We may easily convince ourselves [from (2.26) and 
(2.33)] that replacing (n, {) by (n" {,) preserves 
the commutation relation. This gives 

[P xXOr + P xX~" {HOl]- = O. (III 3) 

But, evidently, {HOl commutes with P x Xl;; (j ~ i). 
Hence, adding these terms to P x X~" we have 

[pxX, {,(Ol]- = 0, (III 4) 

which is the required result. 
It is to be noted that it is the use of spin or repre­

sentation for the component particles that enables 
us to establish these results practically by inspection. 

Forn. > 3 no new problems arise. 

APPENDIX IV 

In this section we discuss the effect of the change 
of variables leading to the canonical representation 
on the integrals over the momentum space. 

The evaluation of the factor p(12)8 in (4.3) (also 
its generalizations for n > 3) and the proof that it 
does lead to properly orthonormalized states may 
be discussed exactly as in Ref. 5. So actually we need 
no new discussion for our final result (4.5). However, 
for the sake of completeness we indicate how to 
evaluate the effect of the change of variables (2.6), 
which includes the n = 2 case as a particular one. 

We may proceed in a fashion quite similar to 
that for n = 2,6 by using (2.16) as an intermediate 
step and then utilizing (III). We have 

X 8(P~) d'P d1l'~ .•. d1l'~_1 

X 8(P - L p,)8(11'~ - PI + AW) ... , 
(IV 2) 

the 8 functions added automatically implying also 

,,-I 

X IT 8(1I'~O + AWO)8(1I'~2 + A~2p2 - m~). (IV 3) 
;-1 

[The 8 functions now serve to ensure the space­
like nature of the 1I'~'s (since P'1I'~ = 0) by limiting 
in magnitude the negative value of 1I'~o's which are 
zero only for P = 0.] 

Now, passing on to the variables 11:, and noting that 

Ap'1I'~ = (0,11:,), 

we have (exactly so for n = 2) 

J d1l'~ 8(11'~2 + ~D, 
where 

J ~. 
= "2 dQ(frj)' 

(IV 4) 

(IV 5) 

(IV 6) 

In (IV 6), dQ(fr;) is the solid-angle element about 
the direction of the unit vector 1r; and 

_ [(P'Pi)2 2Ji 
~, - p 2 - p, 

= [A(P
2

, p~, (P - p,)2)JI 
4P2 , (IV 7) 

where A(a, b, c) is defined as in (4.3). 
For n = 2, (P - p,)2 = P:, and we see that (IV 6) 

reduces to the corresponding formula in J3.ef. 5. 
Thus utilizing the orthogonality properties of the 
spherical harmonics as in (5), we see that the factor 

(IV 8) 

leads to the proper orthonormal properties, just as 
(IV 1) the corresponding factor in (4.5). However, re­

placing the quantum numbers (l', l", m', m") by 
(lI, l2, mI, m2 ) leads to the commutation diffi­
culties discussed in Sec. 3. 
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Momentum Distribution in the Ground State of the One-Dimensional 
System of Impenetrable Bosons* 

A. LENARD 
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Girardeau has shown that an exact analytical formula may be given for the ground-state wave­
function of a system of one-dimensional impenetrable bosons. Starting with this formula we give a 
mathematically rigorous analysis leading to the determination of major features of the :nomentum 
distribution in the limit of an infinitely large system. 

1. INTRODUCTION 

T HE study of quantum mechanical many-body 
systems has great contemporary interest, and 

in recent years much knowledge has accumulated in 
this field. However, the results of most investiga­
tions, while plausible, are not established with 
standards of mathematical rigor. This state of 
affairs, unsatisfactory as it may be, is probably 
inherent in the subject. Therefore, any not com­
pletely trivial system whose reasonably detailed 
properties are subject to exact analysis has an 
intrinsic interest, even if it is not representative 
of any real physical situation. 

The purpose of this paper is the rigorous discussion 
of a specific problem of this kind. We shall study 
the nature of the momentum distribution in the 
ground state of a system consisting of a great 
number of one-dimensional impenetrable particles 
satisfying Bose-Einstein statistics. In a recent paper 
Girardeau l has shown that for this system explicit 
analytic formulas may be given for all stationary­
state wavefunctions in coordinate-space representa­
tion. The momentum distribution in any of these 
stationary states is defined by the well-known rules 
of quantum mechanical transformation theory. How­
ever, even the simplest momentum-space properties 
are given in terms of many-dimensional integrals 
of the type encountered in classical statistical me­
chanics, so that no effective information is imme­
diately available. Of interest is the usual "thermo­
dynamic limit," namely the limit in which both 
the number of particles and the size of the container 
tend to infinity, proportionally to each other. We 
shall show that for our system it is possible to 
establish a number of interesting specific facts in 
this limit. 

The problem of the momentum distribution was 
already attacked by Girardeau l who applied an 

* T~. work was supported by the U. S. Atomic Energy 
CommlBslOn. 

1 M. Girardeau, J. Math. Phys. 1, 516 (1960). 
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approximation method suggested by the work of 
Bogoliubov.2 He found a singular behavior at the 
origin in momentum space reminiscent of, though 
not identical with, the behavior of an ideal Bose 
system (Bose-Einstein condensation). This claim 
was disproved by Schultz3 who observed a mathe­
matical correspondence between the Girardeau model 
and a certain asymptotic limit of an exactly soluble 
"spin system." Using this correspondence, Schultz 
was able to show that in the ground state of the 
Girardeau model no Bose-Einstein condensation 
exists, not even in the generalized sense proposed 
by Girardeau. Our work confirms this conclusion. 
We do not use the spin analogy of Schultz, but 
proceed in a straightforward manner from the 
ground-state wavefunction given by Girardeau and, 
by a step-by-step process, transform the quantities 
of interest into forms for which powerful techniques 
of analysis become applicable. It will be seen that 
an especially important role is played by certain 
results of Szego in the theory of Toeplitz matrices. 4 

An interesting question is the relationship of the 
present paper to studies of more general and realistic 
models of interacting Bose particles, and in partic­
ular, to the three-dimensional model with hard-core 
repUlsive interparticle forces. It has been suggested 
in the past that the singular behavior of Bose 
systems observed at low temperatures is due to 
Bose-Einstein condensation. Such a theory is tenable 
only if a strong short-range interparticle repulsion 
is insufficient to change the qualitative features of 
the momentum distribution from those of an ideal 
gas, though, of course, it must change them quantita­
tively. Whether this is or is not the case is not 
known with certainty, although approximate calcula­
tions suggest that it is. Simple qualitative comparison 
of the one- and the three-dimensional problems 

2 N. N. Bogoliubov, J. Phys. USSR 11, 23 (1947). 
3 T. D. Schultz, J. Math. Phys. 4, 666 (1963). 
4 U. Grenander and G. Szego, Toeplitz Forms and their 

Applications (University of California Press, Berkeley Cali-
fornia, 1958). ' 
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suggests that in the latter case the momentum 
distribution is "sharper" at the origin. Thus a 
discovery of Bose-Einstein condensation in the one­
dimensional model studied here would have been 
taken as very strong evidence of such condensation 
in the three-dimensional model. Unfortunately the 
facts are otherwise and so our investigation throws 
no light on the three-dimensional problem. It only 
shows that very strong interparticle repulsion can 
(at least in one dimension) sufficiently alter the 
momentum distribution to remove its most charac­
teristic feature, the singularity at the origin. 

In the following section we give a precise descrip­
tion of the problem and define the quantities which 
form the subject of the investigation. In Sec. 3 we 
derive the representation of the one-particle density 
matrix as a determinant of a large Toeplitz matrix. 
In Sec. 4 we present the proof of an important 
inequality due to Szego. In Sec. 5 we transform 
the determinant representing the density matrix into 
a form where-from the point of view of the thermo­
dynamic limit-it appears as the well-known "dis­
crete approximation" to the Fredholm determinant 
of a certain kernel given in simple explicit form. 
These results are used in Sec. 6 to prove theorems 
about the thermodynamic limit. It is shown that 
the limiting momentum distribution exists in a 
mathematically precise sense, and certain bounds 
for its behavior for large and small momenta are 
derived. In Sec. 7 we discuss the relevance of these 
theorems from the point of view of the criteria 
of Penrose and Onsager6 as well as Girardeaul for 
the presence or absence of Bose-Einstein condensa­
tion. Finally, in Sec. 8 we compare our results with 
the previous work of Girardeau 1 and Schultz.3 Some 
mathematical material used in the text is collected 
in three appendices. 

2. PRELIMINARmS 

The quantum mechanical problem we shall study 
is defined by the following conditions: 

(i) The wavefunction satisfies the free-particle 
Schrodinger equation for the motion of N particles 
in one dimension. We assume N ~ 2. 

(ii) The wavefunction is symmetrical with respect 
to interchange of particle coordinates (Bose-Einstein 
statistics). 

(iii) The wavefunction satisfies periodic boundary 
conditions with period L. 

(iv) The wavefunction vanishes whenever two 
particle coordinates coincide. 

6 O. Penrose and L. Onsager, Phys. Rev. 104, 576 (1956). 

Condition (iii) may be interpreted to mean that 
the particles are constrained to move on a circle 
of circumference L. Condition (iv) is the expression 
of the mutual impenetrability of the particles. 
Recently, Lieb6 studied a more general problem 
where this condition was replaced by the milder 
one that the logarithmic derivative of the wave­
function with respect to any of the coordinates 
increase discontinuously by a specified amount 'Y 
when the chosen coordinate crosses another one. 
Our model corresponds to the limit 'Y -+ IX), the 
other limit 'Y -+ 0 being the case of free particles. 

The problem defined by the conditions (i)-(iv) 
has a close relationship to the problem of tree 
particles satisfying the exclusion principle. l The 
stationary-state wavefunctions of the two problems 
differ only by a mUltiplicative function which 
assumes only the two values ±1, and the energy 
eigenvalues are identical. 1 In the following we shall 
be concerned exclusively with the ground state. Its 
wavefunction is 

!/tN.L(Xl , X2, •.. , XN) 

= (N! LNri I det e2ri .. z .. ILI. (1) 
l:S".m.SN 

This may also be written in the factored form 

!/tN.L(Xl, X2, ..• ,XN) 

= (N! LNri IT le2riZ.IL - ehihlLI. (2) 
l:Sn<m:SN 

It is real, positive, and translation-invariant, prop­
erties which depend only on the fact that the 
particles satisfy Bose-Einstein statistics, periodic 
boundary conditions, and that it is the wavefunction 
of the ground state.7 Although Girardeau gave (1) 
only for odd N, it is equally correct for even N.s 

We shall be interested in the one-particle reduced 
density matrix (referred to in the following simply 
as the density matrix) given by 

PN.L(X - x') = N i L 
dXl i L 

dX2 ... i L 
dXN-l 

X !/tN.L(Xl , '" ,XN-l, X)!/tlL(X l , '" ,XN-l, x'). (3) 

It is so normalized that PN.L(O) = N jL is the 
particle number density. It is real and positive and 
also of positive type which means that its Fourier 
coefficients with respect to the variable t = x - x' 
are nonnegative. We write 

6 E. H. Lieb and W. Liniger, Phys. Rev. 130, 1605 (1963). 
7 E. H. Lieb, Phys. Rev. 130, 2518 (1963), footnote 15. 
8 Reference 6, footnote 6. 
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( .. , 
PN.L rL 

PN.L(~)e-21r;aVL d~ = N lL dx1 ••• 

10 . L 0 
While our interest lies in the .momentum distribu­
tion, it turns out that it is simpler to investigate 
the density matrix and from its limiting properties 
draw the appropriate conclusions by means of general 
theorems. For the mathematical details on the sub­

(n = 0, ±1, ±2, ... ). (4) ject of distribution functions and their characteristic 
functions, the reader must be referred to the litera­
ture,l1 but we have collected in Appendix 1 the 
statements of all needed facts in a form sufficiently 
complete for the task on hand. 

The Fourier coefficients have an important physical 
significance. P~~~ is the quantum mechanical mean 
(expectation value) of the number of particles having 
momentum9 

k .. = 2-rrn/L. (5) 

We note that it is actually independent of L. For 
the sake of keeping its physical meaning clear we 
shall, however, not drop the subscript L. 

We now lay down the following precise definition. 
Let 

( ) 1 "" (a' FN•L k = - L. PN.L· 
N -",< .. «kLI2 .. , 

(6) 

This function will be referred to in the following 
as the momentum distribution function. It is the mean 
fraction of particles whose momenta are less than 
k, regarded as a function of k; the subscripts Nand 
L calling attention to the total number of particles 
and the box size on which it depends parametrically. 
In terms of the momentum distribution function, 
we now have 

(7) 

The reason for introducing the definition (6) and 
for the somewhat fanciful way of writing what is 
basically the Fourier series of the density matrix 
is the following. The momentum distribution func­
tion belongs to a class known as probability distribu­
tion functions. Another class of functions is formed 
by the Fourier-Stieltjes transforms, in the manner 
of (7), of probability distribution functions, known 
as characteristic junctions. There is a one-to-one 
correspondence between functions belonging to the 
two classes, and important properties of functions 
belonging to one class mirror themselves in cor­
responding properties of the other class. Of particular 
significance is the fact that limiting operations pre­
serve this correspondence. We are here interested 
in the "thermodynamic limit"IO 

N ~ 00, L = IN ~ 00 (l > 0 constant). (8) 

9 We put 1i = 1 throughout. 
10 Since we are dealing with a single quantum state for 

the whole system, namely the ground state, this terminology 
is actually a misnomer. But there is no point in avoiding it 
as long as its meaning is clearly understood. 

We mention here one simple property of the 
momentum distribution which follows from the fact 
that the ground-state energy is identical to the 
ground-state energy of free Fermions with the same 
values of Nand L. Since the ground-state energy is 
also expressible as 

N L~ k2 
dFN.LCk) = .. to> p<;\(2;;)', (9) 

we have for this quantity12 

N i~ k2 
dF N.L(k) 

(
2'11')2 N ( N + 1)2 '11'2 N 2 -Pil = - L q - -- = N - 2' (to) 
L .-1 2 3 L 

Thus, in the thermodynamic limit, 13 

f
.. 2 

lim k2 dFN.L(k) = 3'11'Z2' 
N.L-'tCD -CD 

3. DETERMINANTAL REPRESENTATION OF 
DENSITY MATRIX 

(11) 

We shall now derive an algebraic representation 
for the density matrix, obtained by carrying out 
the integrations in (3). 

Since the box size L enters throughout only as 
a scale factor, we write 

PN.LC~) = Cl/L)RNC2'11'UL). (12) 

The function RN(a) will be shown to be equal:the 
determinant of a matrix with N - 1 rows and 
columns whose elements are functions of a alone. 

Our starting point is the identity 

Y;N.L(X 1 , '" ,XN-l, XN) 

= (NL)-!if;N-I,L(XI' '" ,XN-I) 

X II le2rizoiL - e2riZNIL I, (13) 
l:::;n;S;N-l 

11 M. Loeve, Probability Theory (D. Van Nostrand Com­
pany, New York, 1955), Chap. IV. 

12 For even N the wave vectors in the fermion problem 
must be half-odd integral multiples of the basic Ulllt 2r/L, 
cf. Ref. 8. 

II This notation will be employed for the limit (8). 
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obtained by comparing VtN,L and VtN-l,L in the form 
given in (2), If we then substitute (13) into (3) and 
make use of the determinantal form (1) for VtN-l.L, 
we obtain 

x IT Ie'" - e'!"lle'B, - e-'!"I. (14) 
lSrSN-l 

N ow we expand the determinant in the integrand 
in the usual way into its (N - I)! terms 

det e, .. B .. = E a IT e',aB.. (15) 
lS ... m"N-l P l" .. "N-l 

Here P is a permutation on the first N - 1 integers, 
1'.. is the integer into which P sends n, a is the 
parity of P, and the sum goes over all P. This 
results in the formula 

RN(a) = [(N - I)!] -1 E E aa ' 
P P' 

x II {l..12r dO ei(,·-··,)~ 
l" .. "N-I 21r 0 

X leiB - ei!a I leiB - e-i!a I}' (16) 

Let 

and 

f(O, a) = leiB - eil"lleiB 
- e-'!"I 

= 2 Icos 0 - cos !al, (17) 

c,,(a) = 2: f'" e-inBf(O, a). (18) 

In (16) we have then 

RN(a) = [(N - 1) !r1 

X E E aa' II c,a-,a,(a). (19) 
p p' l~n~N-l 

It is easy to see that the summation over one of 
the running permutation variables is trivial and 
merely serves to cancel the factorial in front. But 
the remaining sum is just the expansion of a de­
terminant. Thus we have 

Theorem 1.14 

(20) 
l:S::n,mSN-l 

The calculations of this paper are based on this 
purely algebraic representation of the density matrix. 

14 This has been found independently by Professor F. J. 
Dyson of the Institute for Advanced Study, Princeton, 
New Jersey. 

We evaluate the elements of the determinant 
explicitly. The integrals (18) are elementary, but 
some care has to be exercised on account of the 
occurrence of the absolute-value sign and the fact 
that the cases n = 0 and n = ± 1 have to be treated 
separately. The result may be written in the follow­
ing simple manner: 

c,,(a) = 2a ... o cos !a 

_ a _ a + ~ [Sin !(n + 1) lal 
.. ,I .. ,-I 1r n + 1 

+ sin !en - 1) lal _ 2 cos !a sin !n lal]. 
n - 1 n 

(21) 

This is valid for 

(22) 

and all n, with the proviso that terms which appear 
with vanishing denominators are to be interpreted 
formally by continuity. For instance, 

coCa) = 2 cos !a 

+ (2/1r)[2 sin! lal - lal cos !a], (23) 

and similarly for n = ±l. 
For the special case a = 0, we have 

{ 

2 (n = 0) 

c,,(O) = -1 (n = ±1) 

o (otherwise). 

(24) 

The determinant (20) is easily evaluated by expand­
ing according to the first two rows. This results in 
the recursion formula 

RN(O) = 2RN- 1(O) - RN- 2(O), (25) 

whose solution is 

(26) 

The significance of Theorem 1 lies in the following. 
We have succeeded in carrying out the integrations 
involved in the definition of the density matrix and 
reduced it to the purely algebraic representation 
of a determinant with elements which are simple 
elementary functions. That this is possible is actually 
not too surprising since mUltiple integrals of related 
type have been evaluated before.16 However, our 
problem is as yet far from solved because we are 
interested in limiting behavior for large N and this 

16 See, for instance, the articles by F. J. Dyson, J. Math. 
Phys. 3, 140, 157, and 166 (1962). The perceptive reader 
will notice that our ground-state wavefunction has an inter­
pretation in terms of Dyson's one-dimensional "Coulomb 
gas on a circle" which, in turn, is related to the eigenvalue 
distribution of his random matrices. 
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cannot he read off the determinantal representation 
any more than it can in the original representation 
as a multiple integral. 18 Fortunately, the actual 
limit of interest [cf. (8) and (12)] demands that 
ex --+ 0 simultaneously with N --+ co, and we shall 
see below that the determinant (20) is a good 
starting point for its calculation. 

The representation given in Theorem 1 has another 
fortunate feature. The determinant is of a very 
special type. Its elements are constant along any 
of the lines parallel to the principal diagonal, and 
they are the Fourier coefficients of a real, non­
negative function. Matrices having this property 
are called Toeplitz matrices and have a very detailed 
analytic theory.' We make use of this theory to 
derive an important inequality for RNCa). This is 
done in the next section i then the thermodynamic 
limit is investigated. 

4. AN IMPORTANT INEQUALITY 

The purpose of this section is to establish the 
following result. 

Theorem Z. 

RN(a) < Min {R2N(R2 - 1)-1 
l<R<", 

X CR4 - 2R2 cos a + 1)-1}. (27) 

This theorem is due to Szego.17 Before presenting 
its proof we discuss the reasons for its importance 
in the present context. 

Let us first inquire what qualitative information 
may be obtained from it. For a = 0, the minimizing 
value of R is 

R = [1 + 1/(N - 1)Ji, 

and the inequality reads 

(28) 

RN{O) < N[1 + 1/(N - l)t-1
• (29) 

In this case we know RN(O) = N, so that the in­
equality yields no new information, but we see that 
it does not Udeteriorate" as N -+ co, since the bound 
overshoots the actual value by a factor no more 
than e = 2.7182 .... 

For a ¢ 0 the direct minimization leads to a 
cubic equation for R2 which, while it can be solved, 
yields a result too complicated to be usefuI. Instead, 

11 In fact, for Borne purposes the mUltiple integral seems 
to offer advantages. Dyson (in an unpublished lecture at the 
Eastern Theoretical Physics Conference of October 1963) 
has shown how a not rigorous but very suggestive argument 
may be based on it, indicating an asymptotic property for 
large N. 

17 Communicated privately to the author by Professor 
G. Szeg6. 

we may proceed by a slight weakening of the 
inequality, replacing the factor (R4_2R2 cos a+1)-t 
by the larger quantity 12 sin !ari . Then the minimiz­
ing value of R is 

R = [1 + 1/(2N - I)]', (30) 

and the inequality reads 

I
N Ii (. 1 )N-i 

RN(a) < sin !a 1 + 2N - 1 

<\4\'. sm "2a 
(31) 

Observe the square-root dependence on N. Together 
with (26) this shows that, in the limit N --+ co, RN(a) 
develops a large peak in the neighborhood of the 
origin a = O. The width of this peak can, of course, 
not be determined from the results so far obtained, 
since (31) only gives an upper bound. Nevertheless, 
the form of this inequality strongly suggests that 
in the thermodynamic limit when aN remains fixed 
as N -+ co one remains, in effect, on top of the peak 
and RN(a) remains of order N. To the extent that 
we anticipate the existence of the thermodynamic 
limit of PN.LW with fixed ~, this is to be expected, 
but the preceding consideration does show that the 
inequality of Theorem 2 is in some sense uuniformly 
good" for all a in spite of the fast variation of 
RN(a) near a = 0 in the case of large N. 

Again, anticipating the existence of this limit, 
we now write18 

lim PN.L(~) = lim N
l RN(2N~) = p(~), (32) 

N,L_CD N_t:D 

Applying the inequality (31) and passing to the 
limit we then obtain 

(33) 

This inequality is useful for the following reason. 
In the course of proving the existence of the limit 
(32), an infinite series representation for the function 
p(~) emerges [cf. (58) below]. While not a power 
series in ~, nevertheless the nature of this series 
is such that, from its first few terms, only the 
behavior of p(~) for small I~I may be deduced. The 
inequality (33) is the only information we have on 
its behavior for large I~I. 

The proof17 of Theorem 2 is based on Szego's 
investigations of Toeplitz matrices.4 In Appendix 2 
we have collected the information from this theory 
needed for our purpose. 

18 Here and in the following we set L = N which corre­
sponds merely to a choice for the unit of length, but for 
conceptual clarity we occasionally refer to L in the notation. 
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In the notation of Toeplitz theory, 

RN(a) = DN-2(J) , (34) 

where19 the function f(B) is given by (17). Let R be 
an arbitrary positive number larger than one, and let 

fR(B) = IRe's - ei!al·IRe,8 - e-i1al. (35) 

Then f(B) < fR(B) and, therefore, by Corollary 1 
of Szego's Theorem A [cf. Appendix 2], 

(36) 

Corollary 2 shows thatfor n = N - 2, N - 1, N, ... 

(37) 

and the right-hand side of this inequality does not 
decrease with n. Now, the function f R (B) satisfies 
the conditions of Theorem B and so the right-hand 
side of (37) has a finite limit as n ---t co, and this 
limit provides an upper bound for RN(a). It turns 
out, luckily, that the limit, as specified by Theorem B 
can be given in elementary terms. The analytic func­
tion assigned to fR(B) by Theorem B is simply 

gR(Z) = (z - Re,!a)t(z - Re-'i")t, (38) 

as one verifies by checking the relevent properties 
which define it uniquely. Thus 

h" = -(l/nR") cos !(an), (39) 
and 

1· D,,(fR) ~ Ih 12 
,,:~ G(fRr l = exp !=t n " 

( 
1 )-t( 2 1 )-t 

= 1 - R2 1 - R2 cos a + R4 . (40) 

This, together with 

G(fR) = IgR(OW = R2, (41) 
shows that 

DN-2(f) < R2N(R2 - 1)-! 

X (R4 - 2R2 cos a + 1ft. (42) 

But R > 1 was arbitrary and the right-hand side 
of (42) is a continuous function of R which tends 
to co both as R ---t 1 and as R ---t co, so that there 
is a minimum on the interval 1 < R < co. This 
completes the proof of Theorem 2. 

S. THE THERMODYNAMIC LIMIT 

We now transform the determinant (20) into a 
form where the limit (32) can be carried out. 

19 In the remainder of this section we suppress the de­
pendence on a which is regarded as a fixed parameter. For 
the notation used here the reader is advised to consult 
Appendix 2 or Ref. 4. 

We begin by writing 

c,,(a) = c,,(O) + b,,(a) , (43) 

where c,,(O) is given by (24), and b,,(a) is obtained 
from (21), 

b ( ) 4~· 2 a + 8 . 2 a . n I I 
"a = - U"'O sm 4 n1l' sm 4 sm 2 a 

+ ~ [Sin !(n + 1) lal 
11' n + 1 

+ sin !en - llhl _ 2 sin!n lal]. 
n - 1 n 

We now write20 

RN(a) = det en-mea) 

= [det C,,_m(O)] 

(44) 

X [det (~",m + L M<:,"!br_m(a»], (45) 
r 

where M~~! is the N - 1 by N - 1 matrix inverse 
to C,,_m(O). The first factor is just RN(O) = N, and 
therefore we have18 

One may verify explicitly that 

M~~~ = N (47) im(N - n) (1 S m S n S N - 1), 

n(N;; m) (1 S n S m S N - 1). 

It will become evident in a moment that it IS 

convenient to rewrite this as follows: 

M (N) u (n m) 
",m = lVW N 'N ' 

where 

w(s, t) = {S(l - t) (0 s sst S 1), 

t(l - s) (0 S t S s s 1) 

(48) 

(49) 

is a continuous function on the unit square 0 S s, 
t S 1. Thus 

PN,Lee> 

= det (~n,m + N ~ w(;" , ~ )br_m(2;/)). (50) 

We now inspect closely the three terms of the 
matrix product N Lr in (50) obtained from the 
three terms of b,,(a) as given in (44). 

20 To keep the notation uncluttered we suppress the range 
of indices in the sums and determinants, It is the first N - 1 
positive integers, 
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The first term gives 

4N .• 'II"e (n m) 
- sm 2N w N' N 

(51) 

Here and in the following we mean by the O-symbol 
a quantity which is bounded by a constant times 
the indicated argument, where the "constant" may 
depend on e but not on nand m. This ensures that 
we can investigate limiting behavior as N ~ co and 
fixed e uniformly in nand m. 

Next we consider the second term in (44). Its 
contribution to the matrix product in (50) is 

~ • 2 S. ~ (!!.. !..-) sin 'II" I~I (riN - miN). (52) 
'll"sm 2N '7' w N ' N rlN - miN 

In the limit of large N, the sum over r when divided 
by N appears as a Riemann approximating sum to 
an integral and the error is easily estimated by the 
customary methods. Thus (52) becomes 

L 2 t211 d (!!.. ) sin'll" lei (cr - miN) 
N. '11".. 0 cr W N ' cr cr - miN 

+ O(~2)' (53) 

Finally, we come to the third term in (44) and its 
contribution to the matrix product. The computation 
is greatly facilitated by the observation that the 
square bracket in (44) contains a second difference 
with respect to the subscript n. The sum over r 
in (50) may then be treated by the "summation 
by parts" procedure, the discrete analog of integra­
tion by parts. Great simplification arises because­
apart from boundary terms which, of course, have 
to be duly taken into account-we have to deal 
with the second difference of the other matrix 
factor, but M!~;+I + M~~;_I - 2Mc:,! = 0 .. " by 
definition of the matrix M [cf. (24)]. A careful 
manipulation reduces this contribution to 

~ [(nlN) sin ('II" I~I (1 - miN) 
'll"N 1 - miN 

+ (1 - nlN) sin ('II" I~I miN) 
miN 

_ sin ('II" I~I (niN - miN»] (54) 
nlN - miN . 

Summing up (51), (53), and (54), we may write then 

PN.L(~) 

= det [ 0 ..... + ~ K(~ , ~ ; ~) + O(~2) 1 (55) 

The function K is defined as follows: 

K(s, t; e) = _'II"2~2W(S, t) 

+ 2'11"~211 dcr w(s, cr) sin'll" lei (cr - t) 
o cr - t 

+ ~ [s sin ('II" lei (1 - t) 
'II" 1 - t 

+ (1 - s) sin ('II" I~I t) _ sin ('II" I~I (s - t»J. (56) 
t s - t 

It is a continuous function of sand t on the unit 
square 0 ~ s, t ~ 1, and depends on ~ parametrically. 
Since the left-hand side of Eq. (55) is a periodic 
function of ~ we must, strictly speaking, note that 
the equation as written is valid only in the interval 
-!L ~ ~ ~ !L; but this limitation becomes 
irrelevant as N = L ~ co and so we may think 
of ~ as arbitrary. 

Now we observe that the determinant (55) is­
apart from the O(N-2

) error terms in the elements­
precisely the discrete approximation to the Fredholm 
determinant belonging to the integral kernel 
K(s, t; ~).21 Thus we have shown the following. 

Theorem 3. For all fixed ~, the thermodynamic limit 
of the density matrix exists and is equal to 

., 1 11 
p(~) = 1 + L I ds1 ' •• 

.. -1 n. 0 

X 11 ds.. det K(s., S;; ~) (57) 
o ISi,iS. 

where the kernel K(s, tj ~) is given by (56). 

In the next section we shall derive a number of 
specific conclusions from this fact. 

6. THE LIMITING MOMENTUM DISTRIBUTION 

We would now like to conclude that a limiting 
momentum distribution F(k) exists satisfying 

(58) 

which is the analog of (7) for a finite system, and 
that-in some sense-

lim FN.L(k) = F(k). (59) 

Actually there are two separate questions involved. 
First, is there a probability distribution function 
F(k) such that (58) is true? Second, if so, does (59) 

21 G. Kowalewski, Einfuhrung in die Determinantentheorie 
(Chelsea Publishing Company, New York, 1948), 3rd ed., 
Paragral?h 115. We prove in Appendix 3 that the error terms 
may be 19nored. 
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hold for this function and in what precise sense? 
The answer to these questions is contained in the 
continuity theorem for distribution functions and 
characteristic functions (cf. Appendix 1). It asserts 
that the answer to the first question is affirmative 
and that (59) holds in the sense of a pointwise limit 
at all continuity points of F(k) under the single 
additional assumption that p(~) is continuous at 
the origin. 

It is not difficult to verify that this is so, but 
we actually prove a much stronger property of 
which the continuity at the origin is a trivial con­
sequence and which gives important additional 
information. 

Theorem 4. p m is an entire function of the variable 
I~I· 
To be quite precise, this means that there is an 
entire function of the complex variable fCz) such 
that pC~) = lOW. To prove this, we consider the 
kernel (56) as a function of z, that is to say a function 
Q(s, t; z) which arises when I~I is everywhere formally 
replaced by z. This function is manifestly an entire 
function. Its power-series expansion is 

Q(s, t; z) = -r2z2w(s, t) 

a> l"+1 
+ ~ A,,(s, t) (2n + 1)1 ' (60) 

where the coefficients A .. (s, t) are certain uniformly 
bounded functions of sand t on the unit square 
o ~:;rs, t ~ 1. It follows that each term 

1 11 11 -; ds1 • • • ds" det Q(s., s;; z) 
n. 0 0 IS',fS .. 

(61) 

in the expansion (57) of fez) is an entire function 
fn(z) , say, of the complex variable z. Let r be an 
arbitrary positive number and let M = M (r) denote 
the maximum absolute value of Q(s, t; z) for Izl = r 
and s, t on the unit square. According to the determi­
nant inequality of Hadamard22 we have then 

(62) 

From this and the Weierstrass "M-test"23 it follows 
that the series 

., 

fez) = 1 + L: I"(z) (63) 
.. -1 

22 E. T. Whittaker and C. N. Watson, A Course of Modern 
Analysis (Cambridge University Press, Cambridge, England, 
1958), 4th ed., Paragraph 11.11. The statement and proof must 
be slightly modified to make it valid for determinants with 
complex elements. 

23 Re ference 22, Paragraph 3.4. 

converges uniformly for Izl = r, and this in turn 
implies24 that its sum represents an analytic function 
of z for Izl ~ r. But r was arbitrary, hence fez) is 
an entire function. This proves Theorem 4. 

The first few terms of the convergent power-series 
expansion guaranteed by this theorem are easily 
calculated. We have2

& 

K(s, t;~) = -r2~2w(s, t) 

+ tn-2 1~13 s(1 - s) + O(I~15), (64) 

and therefore 
2 2 4 

p(~) = 1 - ~ ~2 + ~ 1~13 + 1~0 ~4 + O(I~15). (65) 

The calculation of higher terms is straightforward in 
principle but becomes prohibitive in practice on ac­
count of the rapidly increasing algebraic complexity. 

Naturally, (65) implies the continuity of p(~) at 
the origin. Therefore, p(~) is a characteristic func­
tion, and the corresponding distribution function 
F(k) is given by the inversion formula of (58), namely, 

F(k1) - F(k2) = lim fA e-'k·~2 -.t'k.
e p(~) d~. (66) 

A-a> -A r~ 

This formula holds for all continuity points kl and 
k2 of F(k) and defines it uniquely. Moreover, (59) 
holds in the sense of a pointwise limit, again at all 
continuity points of F(k). This is the most that can 
be said to follow from the uniqueness and continuity 
theorems (cf. Appendix 1) and our Theorems 3 and 4. 

We shall now show that more can be said upon 
making use of the inequality (33). Substitute this 
inequality on the right-hand side of (66) and make 
use of 

Isin !(k1 - k2)~1 ~ Min {I, IHk1 - k2)~\}' 

Thus 

\F(k1) - F(k2) I 

< eir- I i: \~I-! Min {I, 1!(k1 - k2)m d~ 
= 4ei r -I Ikl - k2\i. 

(67) 

(68) 

This inequality is a Holder condition with index !. 
It implies, in particular, the continuity of F(k) as 
seen by letting k1 ~ k2 • Now, if a sequence of 
probability distribution functions tends to a con-

24 Reference 21, Paragraph 5.3. 
n It will be observed that K(s, t; ~) is not a symmetrical 

kernel. The author has tried in vain to modify the argument 
of Sec. 5 so that a representation in terms of a symmetrical 
kernel should emerge. Such a representation is, however, 
implicit in the work of Schultz, Ref. 3, and is discussed in 
Sec. 8 of this paper. 
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tinuous probability distribution function, then the 
convergence is uniform over the whole real axis. 26 
We summarize our results as follows. 

Theorem 5. In the thermodynamic limit, the momen­
tum distribution function FN.L(k) converges uniformly 
to a continuous limiting distribution F (k) which satisfies 
the HO'lder condition (68). 

The physically interesting information is the con­
tinuity of the limiting distribution. Its proof depends 
crucially on the Szeg6 inequality, Theorem 2, of 
which it forms the principal application. 

The discontinuities of F N.L(k) which have the 
physical interpretation of the mean fractional 
occupation numbers of the various momentum 
states shrink to zero in the thermodynamic limit. 
How fast? Our next theorem gives an estimate. 

Theorem 6. The discontinuities of F N. L (k) are less 
than 

N-It( 1 + 2N 1_ It-It ~ B(l, !). (69) 

Proof: Because of the positiveness of PN.Lm the 
largest discontinuity of FN.L(k) occurs at the origin 
[cf. (6) and (4)], and that is 

(0) 1 1r 

P;/ = 27f'N -r RN(a) da. (70) 

Substitution of the inequality (31) and evaluation 
of the integral proves the theorem. The numerical 
coefficient 7f' -lB(l, !) is less than 2. 

Finally, we give a result on the behavior of the 
limiting momentum distribution for Ikl ~ 00. In 
effect, it gives a bound to the rate at which F(k) 
approaches its asymptotic values. 

Theorem 7. No absolute moments of F(k) of order 
~ ~ 3 exist. The second moment is finite and equal 
to !7f'2. 

The proof depends on the differentiability theorem 
for characteristic functions (cf. Appendix 1). For, 
if any absolute moment of order ~ ~ 3 would exist 
(i.e., would be finite), then p(~) would be three 
times continuously differentiable; but it is not, on 
account of the appearance of the 1~13 term in (65). 
It is, however, twice differentiable, and 

i: k 2 dF(k) = - pl/(O) = !7f'2. (71) 

This quantity is just the mean kinetic energy per 
particle in the thermodynamic limit [cf. also (11)]. 

'6 A proof of this fact is given in Appendix 1. 

7. BOSE-EINSTEIN CONDENSATION 

The phenomenon of Bose-Einstein condensation 
(or condensation in momentum space) for an ideal 
gas of Bose particles was discovered long ago,27 
but it was only relatively recently that proposals 
were put forward for mathematically precise criteria 
to distinguish the occurrence from the nonoccurrence 
of such condensation in the physically more interest­
ing but much more difficult problem of a Bose gas 
with interparticle forces. We shall consider the appli­
cation of two such criteria to the present one-dimen­
sional model. 

Penrose and Onsager28 formulate the criterion in 
terms of the largest eigenvalue of the density matrix. 
According to this criterion, there is no condensation 
when the largest eigenvalue divided by the total 
number of particles tends to zero in the thermo­
dynamic limit. Since 

lL ( ')e2ri"Z'/L d ,_ (n) e2rinz/ L 
PN,L x - X X - PN,L , 

° 
(72) 

the eigenvalues in question are just the quantities 
Pt',)L (n = 0, ±I, ±2, ... ) and the largest of them 
is P1°,)L' This divided by N is just the largest dis­
continuity of the momentum distribution function. 
Thus we see that Theorem 6 signifies the fulfillment 
of the Penrose-Onsager criterion for the absence of 
Bose-Einstein condensation. It actually does more: 
it provides the specific bound O(N-i) for the mean 
fraction of zero-momentum particles in the limit 
N=L~oo. 

In his paper on the one-dimensional gas of Bose 
particles, Girardeau l suggested a more stringent 
criterion. This may be formulated in our notation 
as follows29 : 

lim lim sup [FN,L(k) - FN.L(-k)] = O. (73) 
};-+o N,L-tor» 

It is fulfilled because of the existence and continuity 
of the limiting momentum distribution (Theorem 5). 
The essence of Girardeau's criterion lies in the order 
of the two limiting processes. If the order is reversed 
one obtains the Penrose-Onsager criterion. The 
latter is always fulfilled when the Girardeau criterion 
is, because 

~ lim lim sup [p;,?\/N] = lim sup [p;'?\/N]. (74) 
k_+O N.L-HO N,L_a'J 

27 A. Einstein, Sitzber. Preuss. Akad. Wiss. Physik-Math. 
Kl., 261 (1924); 3, 18 (1925). 

28 O. Penrose and L. Onsager, Phys. Rev. 104,576 (1956). 
29 Where we write "lim sup" Girardeau has "lim". This 

change was made to render the criterion logically independent 
of the existence of a limiting momentum distribution. 
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The implication does not hold the other way, how­
ever, as can be demonstrated by counter examples. 

The O(N-i) bound of Theorem 6 and the O(lk 1 -

k2li) bound of Theorem 5 are not unconnected. Both 
are rooted in the Szego inequality (31) or ultimately 
(27). It is possible to write a single inequality which 
displays this connection. It is derived by writing 
the difference F N ,L(k1) - F N ,L(k2) in the form of a 
finite sum from (6) and replacing the p;;\ by their 
definition (4) as Fourier coefficients. This gives 

(75) 

where n1 is the largest and n2 the smallest integer 
satisfying 

(76) 

Making use of the inequalities (31) and (67), one 
obtains then 

FN ,L(k1) - F N ,L(k2) < const [(L/N)(k 1 - k2)]!' (77) 

This inequality implies both the Holder condition 
(68) of Theorem 5, and Theorem 6; the former by 
letting N = L ~ co, the latter by putting L(k1 - k2) 
equal to some positive number less than 211". 

It should be stressed that our conclusions must 
not be interpreted to mean that the momentum 
distribution shows no distinguished features at the 
origin in the thermodynamic limit. It is charac­
teristic of our results that they provide bounds; 
bounds which are strong enough to satisfy physically 
motivated criteria for the absence of Bose-Einstein 
condensation, but not precise enough to reveal the 
qualitative properties of the momentum distribu­
tion. It seems quite likely that F(k) is actually a 
quite smooth function of k (perhaps even analytic) 
outside the origin, and that near the origin its 
behavior is 

k 
F(k) = ! + const jkff + o([kli) (k ~ 0). (78) 

Whether there really is a "singularity" of this, or 
perhaps some even milder, type at the origin in 
momentum space remains an unsolved problem.30 

8. COMPARISON WITH PREVIOUS WORK 

The problem of the momentum distribution has 
been already considered in the past. 1 

,3 Here we shall 
30 The difficulty is that we have not been able to do better 

than the inequality (33) as regards the I~I --> <Xl behavior of 
p(~). A sufficient sharpening of it would alIow the derivation 
of (78). 

consider some aspects of this previous work in the 
light of our own results. 

Girardeau treats the problem of the momentum 
distribution with an approximation method due to 
Bogoliubov.2 This method is not well adapted to 
the investigation of the question of Bose-Einstein 
condensation because in a sense it assumes an 
affirmative answer. This is so because the zero 
momentum state is distinguished at the outset by 
the assumption that it has a very much larger 
average occupation than the other momentum 
states. In addition to this difficulty of principle, 
Girardeau was forced to make certain approxima­
tions in his calculation whose validity is open to 
question. His conclusion was that the Penrose­
Onsager criterion for the absence of Bose-Einstein 
condensation is satisfied, but not the more strict 
criterion (73), indeed this was his reason for propos­
ing the latter in the first place. The suggested 
dependence of the average zero-momentum occupa­
tion number on the total number of particles31 

p~\ '" N/ln N (N ~ co) (79) 

is clearly contradicted by our Theorem 6. The 
incorrectness of Girardeau's result was already 
proved by Schultz.3 

Schultz started by posing the quantum mechanical 
problem in the formalism of second quantized fields. 
Then he replaced the continuum of space points in 
the box 0 ~ x ~ L by a large but finite number of 
equidistant points in this interval so that the com­
mutation rules became a finite algebraic system. 
He then made the crucial observation that this 
"discretized" problem is from the mathematical 
point of view completely identical to a certain 
problem of interacting spins, a problem whose solu­
tion had already been worked out.32 In particular, 
the density matrix, or what is the same, the function 
RN(a) was given in the following form33

: 

1;1 RN(a) = l.~" lS~~tS' [ - O.,P+1 

+ ! G (p + 1 - q. )] "N N ,a, (80) 

where 

G ( . ) _ hlsin!CNas) 
N S a - . 

, 11" sin !Cas) (81) 

The essence of the method is the extra limiting 

31 Reference 1, Eq. (A50). 
32 E. H. Lieb, T. Schultz, and D. Mathis, Ann. Phys. 

(N. Y.) 16,407 (1961). 
83 Reference 3, Eqs. (2), (11), (14), and (15). 
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process, visible in (80), which corresponds to going 
from the discrete to the continuum. It must be 
carried out independently of, and prior to, the 
thermodynamic limit. Leaving p fixed and finite in 
(80) one gets an approximation to RN(a) equal to 
replacing the integrals in (14) by their Riemann 
approximating sums with a subdivision of the interval 
(0,211') into p equal parts. 34 

By analyzing the nature of the p by p matrix 
which occurs in (80), Schultz was able to derive 
an inequality which corresponds to our (31) but is 
somewhat weaker. With its help he showed that 
(73) is fulfilled, thus controverting the claim of 
Girardeau. 

Regarding the determinant in (80) we observe 
the following. It is precisely equal to the algebraic 
complement of the element in the lower left-hand 
corner (q = 0, p = p) of the larger determinant 
with p + 1 rows and colums, 

det [0 •. " - 1. GN(q - P ; a)]. (82) 
O~<l.P::;" v v 

From the point of view of the limiting process 
p -+ <Xl, this is of the Fredholm type; and not only 
its limiting behavior but also that of its minors 
can be found exactly.35 One obtains3e 

11 (0 Sl ••• s ) 
X ds"GN 1 " ; a ) o Sl ••• s .. (83) 

where 

(
S081 ••• s ) 

GN t t t" ; a = det GN(s, - t;; a) 
o 1 ••• " OSi. is,, 

(84) 

is the Fredholm symbol belonging to the kernel 
GN defined by (81). We shall now show that the 
series in (83) is actually finite because 

(
SOSl '" s". )_ 

GN tOtl ... t .. ) a - 0 (85) 

identically in the variables whenever n ~ N. This 
fact has its origin in the identity 

sin l(Na8) L: 'ra. = e sin !(as) r ) 
(86) 

the summation ranging over r = -!(N - 1)"", 
!(N - 3), HN - 1). Thus the matrix of n + 1 rows 

II. This was pointed out to the author in 8. correspondence 
by Dr. Schultz. 

II Reference 21, Paragraph 117. 
II The possibility of the transformation from (SO) to (83) 

seems not to have been noticed by Schultz. 

and columns whose determinant is (84) may be 
regarded as a matrix product of two rectangular 
but in general not square matrices, one having 
n + 1 rows and N columns, and the second one 
N rows and n + 1 columns. It is a general fact 
of the algebra of determinants37 that the deter­
minant of such a product vanishes when N < n + 1. 

It is rather remarkable that the expression given 
by (83) for RN(a) represents the same function as 
the determinant (20) derived in the present paper, 
different though-to all appearances-it may seem. 
An explanation lies, perhaps, in the circumstance 
that the elements of a determinant may be altered 
in manifold ways without changing its value. N ever­
theless, it would be interesting to see a short proof 
of the identity of these two expressions. We may 
remark in this connection that their general character 
is the same, namely a finite combination of trigono­
metric functions of lal and powers of lal. This is 
obvious38 in the case of (20), and in the case of 
(83) it follows from the identity (86), together with 
the fact that integration of functions belonging to 
the class indicated always produces functions again 
belonging to that class. A simple proof of the 
identity would seem to require an ingenious exercise 
in formal manipulation. 

Our own representation of RN(a) seems simpler 
because no integrations occur in it, but it is conceiv­
able that (83) is more useful for certain purposes. 
For one, it is easier to carry out for it the thermo­
dynamic limit (32). Instead of the elaborate calcula­
tions of Sec. 5, we now only have to notice that 

lim GN(S; 211'~) = 2 sin lI'S I~I = g(s; ~), 
N-", N lI'S 

(87) 

and in (83) we can go to the limit term by term.39 

This gives 

11 11 (0 Sl ••• s.. ) X ds1 '" ds .. g 1 ; ~ , 
o 0 Sl ••• 8" 

(88) 

with 

(
S081 ••• S ) 

g t t tn;~ = det g(s; - tj;~). 
01 ••• n O::::;;i,;$,. 

(89) 

Again, (88) looks very different from the representa­
tion given in Theorem 3, but it is easily verified, 
for instance, that the behavior for small I~I is given 

aT Reference 21 Sec. 34. 
18 Powers of Jar arise from c,,(a) with n EO O. ±1. 
18 The rigorous justification of the legitimacy of this step 

should not be difficult. 
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correctly by (65). Whether any properties of p(O 
can be better revealed in the representation (88) 
is not known. 
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APPENDICES 

AI. Distribution Functions and Characteristic 
Functions 

A (cumulative) probability distribution function 
F(k) is a real nondecreasing function such that its 
total variation is from 0 to 1. Such a function has 
at most a denumerable number of ordinary jump 
discontinuities and is continuous at all other points. 
Its value at the discontinuity points may be conven­
tionally fixed by continuity from the left, for example. 

The characteristic function q,(O belonging to the 
probability distribution function F(k) is defined by 
the Fourier-Stieltjes transformation 

q,(~) = L: e'kf dF(k). (90) 

This relationship is unique, i.e., two probability 
distribution functions to which belongs the same 
characteristic function can differ only (inessentially) 
at discontinuity points. There is an explicit inver­
sion formula 

(91) 

the implication being that the Iimit exists and is 
equal to the difference on the left, provided kl and 
kJ are continuity points. (Uniqueness Theorem.) 

One reason for the importance of this one-to-one 
relationship between these two classes of functions 
is that limiting operations preserve this correspond­
ence. More specifically, let q, .. (~) be a sequence of 
characteristic functions belonging to the probability 
distribution functions F .. (k), such that 

lim q, .. (~) = q,(~) (92) 
" ...... 

exits (pointwise) and is continuous at ~ = O. Then 
there is a probability distribution function F(k) such 
that (i) its characteristic function is q,(~), and (li) the 
limiting relation 

lim F .. (k) = F(k) (93) 
........ 

holds at every continuity point of it. (Continuity 
Theorem.) 

The mode of convergence in (93) is considerably 
sharper when F(k) is continuous. In this case the 
convergence is uniform for all k. To prove this, let 
E > 0 be arbitrary and let k, (i = 1, 2, ... ) be a 
finite number of points at which F(k) assumes 
values which are integral multiples of !E. Let then 
N =N(E) be so large that all differences F .. (k,)-F(k,) 
are less in magnitude than !E for all n 2 N; this can 
be done because i runs through a finite number of 
values only. If now k is arbitrary, it is easy to see 
that from the nondecreasing nature of the dis­
tribution functions it follows that F,,(k) and F(k) 
differ by less than E for all n ~ N. 

There is a simple relationship between the moments 
of the probability distribution function F(k) and the 
derivatives of q,(x) at the origin. If the absolute 
moment 

(94) 

exists (i.e., is finite) then the characteristic function 
corresponding to F(k) has everywhere continuous 
derivatives of all orders not exceeding ~. If ~ is an 
even integer the value of the integral (94) is obtained 
from (90) by formal differentiation. (Differentia­
bility Theorem.) 

We have quoted these facts only to the extent 
needed in the text (Sec. 6). For more complete 
statements and proofs the reader is referred to the 
literature. 11 

A2. Szego's Theory of Toeplitz Determinants' 

A Toeplitz matrix is a finite matrix whose elements 
are given by 

c,,-m = 1- J" f(O)e-iC .. -rn)B dO 
211' -r 

(0 ~ n, m ~ N), (95) 

where f(O) is a real, nonnegative function. Its de­
terminant is denoted by DN (!). An important role 
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is played by the geometric mean 

1 1'-exp 2'11' _.- In f(8) d8, 

occur,'2 but for a wide class of functions f(8)the 
limit is finite. This is the content of the second 

(96) of Szeg6's theorems which we make use of. 

which is denoted by G(f). 
Szeg6 has shown that the ratio of two succeed­

ing Toeplitz determinants may be characterized as 
the solution of a certain minimum problem. 

Theorem A. The ratioDN(f)/DN_1(f) is equal to the 
minimum with respect to the N complex numbers 
U h U2, ... , UN of the integral 

2~ i: f(8) 

X 11 + u1e
iS + u2e

2iS + ... + uNeNisI2 d8. (97) 

This theorem is proved40 by consideration of certain 
orthogonal polynomials associated with the function 
f(8). It has two important consequences. 

Corollary 1. If ](8) > f(8) then DN(J) > DN(f). 

Corollary 2. The sequence DN(f)/G(f)N+1 (N = 
0, 1, 2, ... ) is nondecreasing. 

The first follows from Theorem A by the general 
principle that if one real function is always larger 
than another then the minimum of the first one is 
larger than that of the second. Corollary 2 is shown 
as follows. Write the minimizing trigonometric poly­
nomial of (97) in the factored form 

1 + u1e
iS + ... + uNeNiS 

= (1 - A 1e
is) ... (1 - ANeiS), (98) 

where the A's are certain complex constants depend­
ing on f and N. Now, the integral (97) is an arithmet­
ical mean of a function of 8 and therefore is never 
less41 than the geometrical mean of the same func­
tion. On the other hand, the geometrical mean of a 
product is the product of the geometrical means. 
Now, for each of the factors in (98) one shows by an 
elementary integration that 

G(II - Aeisn = Max {I, IAn ~ 1, (99) 

and hence 

(100) 

from which the assertion follows. 
In view of Corollary 2 there are two posibilities. 

As N ---7 co, either the sequence tends to infinity 
or else it has a finite limit. Both possibilities actually 

40 Reference 4, p. 38. 
41 G. H. Hardy, J. E. Littlewood, and G. Polya, Inequali­

ties (Cambridge University Press, Cambridge, England, 
1934), Theorem 184. 

Theorem B. Let f(8) be strictly positive and let its 
derivative f' (8) satisfy a Holder condition with some 
index less than 1. Then the sequence DN(f)/G(f)N+1 
tends to the finite limit 

(101) 

The numbers h" are coefficients in a power-series 
expansion 

'" 
In g(z) = L: h"z", (102) 

,,-0 

g(z) being defined uniquely (up to an irrelevant constant 
phase factor) by the properties (i) g(z) is analytic, 
regular and not zero in the circle Izl < 1, and (ii) the 
squared absolute value of g(reiS) tends to fee) as r ---7 1. 

Szeg6's proora is a subtle construction of analysis 
based on approximation of functions by trigono­
metric polynomials. An alternative proof based on 
different ideas has been given by Kac.44 

We note that in the application contemplated 
(Sec. 4) it was impossible to apply Theorem B 
directly to the Toeplitz determinant RN(a) because 
the f(8) belonging to it is 2 Icos 8 - cos !al, and 
this does not satisfy the requisite conditions. 

A3. A Theorem on Determinants 

In order to complete the proof of Theorem 3 
it is necessary to show that in the limit N ---7 CD 

the "error terms" of (55) may be ignored. We do 
this by proving a proposition which shows that a 
sufficient condition for this is that they be o(N-I). 

Let AN and B N be given N by N matrices for N = 
1, 2, 3, ... such that the elements of AN are uniformly 
O(N- 1

) and the elements of BN are uniformly o(N-i) 
as N ---7 ex:>. Let IN be the N by N unit matrix. Then 
the difference between the determinant of IN + AN + BN 
and the determinant of IN + AN tends to zero as N ---7 ex:>. 

We prove this by making use of the celebrated 
inequality of Hadamard,22 according to which the 
magnitude of a determinant is not more than the 
product of the Euclidean norms of its row vectors. 
The difference of our two determinants may be 
written with the help of the mean-value theorem 

42 An example of the first possibility is furnished by our 
RN(O) = DN-.(f) = N with 1(8) = 2(1 - cos 8). 

43 Reference 4, p. 76. 
44 M. Kac, Duke Math. J. 21, 501 (1954). 
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of differential calculus as follows: 

(103) 

where 0 ~ 8N ~ 1. According to the rule of dif­
ferentiating determinants, this is 

flN = L: L: (BN)n.m(-lrm det Q';;"', (104) 
l:5n,m:5N 

where Q,;;m is that N - 1 by N - 1 matrix which 
arises from the matrix IN + AN + 8NBN by striking 
the nth row and the mth column. We consider first 
the N terms n = m in the sum (104). All rows 
of Q';;" consist of one "large" element 1 + 0(N- 1

) 

and N - 2 "small" elements 0(N- 1
). The Euclidean 

norms of these rows are therefore 

{[ 1 + 0(1) J + (N - 2>[ O(~) JY 

Idet Q';;"I = [1 + 0(1) J-l = 0(1), (106) 

and the contribution of N such terms to flN is 
No(N-l)O(I) = o(N-i). On the other hand, consider 
the terms in the sum n ~ m. The matrix Q';;"' now 
has one row, namely the mth, with no large element, 
so that the norm of this row is 

while its other rows have norms (105). Thus, for 
n~m, 

Idet Q,;;ml = o(~)[ 1 + O(~) J-2 
= O(-ftr). (108) 

= 1 + o(~). 
Hence 

(105) There are N 2 
- N such terms in the sum (104), 

so their total contribution is (N2 
- N)o(N-I)O(N-t ) 

= 0(1). Thus lim flN = 0, as was to be shown. 
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Correlation Functions and the Critical Region of Simple Fluids 
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The "classical" (e.g. van der Waals) theories of the gas-liquid critical point are reviewed briefly and 
the predictions concerning the nature of the singularities of the coexistence curve, the specific heat, 
and the compressibilities are compared critically with experiment and with the analytical and nu­
merical results for lattice gas models. 

The critical singularities are related to the behavior of the pair correlation function G(r) = g(r) - 1 
and the Ornstein-Zernike theory of critical scattering is reviewed. Alternative derivations of the 
theory are discussed and its validity is assessed in relation to experiment and to more detailed theo­
retical calculations. The nature and magnitude of the expected deviations from the "classical" theory 
are described. The analogies with critical magnetic phenomena are mentioned briefly. 

T HIS is a review article about theories of the 
critical point and their experimental and 

theoretical validity. Recent work has revealed the 
shortcomings of the well-known approximate theories 
and it is hoped that this review, although in the 
main nonmathematical in character, will provide 
some stimulus to further theoretical (and experi­
mental) work on this old, but still imperfectly 
understood problem. 

1. THE CLASSICAL THEORY OF 
THE CRITICAL POINT 

At temperatures below its critical temperature To 
a gas can be condensed by isothermal compression. 
At temperatures above To the transition from dense 
gas to liquid takes place without discontinuity of 
density or, as far as has been determined experi­
mentally, without any higher-order singularities in 
the density or other variables. As the temperature 
increases to To the difference between the densities 
PL and Po of coexisting liquid and gas tends con­
tinuously to zero. 1 The limiting density Po, and 
corresponding pressure Pc, define the critical point 
(see Fig. 1). In this article we shall be concerned 
with the properties of a simple fluid in the region 
of its critical point and in particular on the critical 
isochore P = Po. 

In many respects the behavior of binary fluid 
mixtures which undergo phase separation is closely 
analogous to the condensation of simple fluids and 
most of our remarks can be translated directly into 

* On leave of absence from The Wheatstone Physics 
Laboratory, King's College, London, England. 

1 It now seems quite well established experimentally that 
for simple fluids, such as the noble gases, the coexistence 
curve does not have a significant "flat top." For a discussion 
of this suggestion see O. K. Rice, J. Phys. & Colloid Chem. 
54, 1293 (1950); and Ref. 60 below. See also D. R. Thompson 
and O. K. Rice, quoted in Ref. 11 below. 

p 

Gas 
Two Phase! region 

i 
p 

FIG. 1. Sche­
matic isotherms for 
a simple fluid in the 
cn tical region. 

such terms.2 For simplicity, however, we refer in 
the main only to single-component systems. 

As is well known, a qualitative account of con­
densation phenomena and the critical point is given 
by the classical equation of van der WaaIs 

plkT = pl(l - bp) - allkT, (1.1) 

provided this is supplemented by the "equal area 
rule" of Maxwell which ensures that the density 
p is a single-valued function of the pressure p.8 
The general appearance of the isotherms of a van der 
Waals gas in the critical region is similar to that 
of a real gas as shown in Fig. 1. In particular the 
p, p isotherms become flatter and flatter as T 
approaches To from above at the critical density 
and correspondingly the isothermal compressibility 

K - _l (aV) _ 1. (a p) (1.2) 
T- VapT-papT 

I J. S. Rowlinson, Liquids and Liquid Mixtures (Butter­
worths Scientific Publications, Ltd., London, 1959), Chap. 5. 

I Maxwell's thermodynamic derivation of the rule is 
unsatisfactory in that it is necessary to give thermodynamic 
significance to "unstable" (and "metastable") states on the 
original van der Waals isotherm. A formally equivalent but 
theoretically somewhat more convincing argument is to use 
the minimal properties of the Gibbs free energy (or chemical 
potential) to eliminate the unwanted parts of the van der 
Waals isotherm. 

944 
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which is essentially the reciprocal of this slope, 
diverges to infinity at the critical point. 

The derivation of the van der Waals equation 
given by Ornstein4 suggests that it should be a 
reasonably good.approximation when the pair inter­
a.ction potential q,(r) of the molecules of the fluid 
has a short-range strongly repulsive core and a 
very long-range weakly attractive tail. Indeed Kac, 
Uhlenbeck, and HemmerS have recently shown that 
the van der Waals isotherm (with flat part) follows 
rigorously for a one-dimensional gas of hard rods 
interacting with an attractive exponential potential 
in the limit that the exponential becomes infinitely 
long-ranged and infinitely weak [holding f~ q,(r) dr 
constant]. It seems probable, however, that the 
behavior of a real gas in its critical region is crucially 
dependent on the finite or relatively short range 
of the attractive parts of more realistic potentials. 
This is supported by the comparison with real 
systems and exactly soluble models we present in 
the next section. 

Three principal predictions concerning the critical 
region which follow from the van der Waals equa­
tion are: 

(a) that the coexistence curve follows a square-root 
law, i.e., the difference between liquid and gaseous 
densities vanishes as 

PL - Po ~ A(T. - T)i (T ~ T.-); (1.3) 

(b) that the compressibility along the critical 
isochore diverges as a simple pole, 

(p = P., T ~ T.+); (1.4) 

and 
(c) that the specific heat (at constant volume) 

along the critical isochore rises to a maximum and 
then falls discontinuously as T increases through 
T., i.e., 

Cy(T) ~ C: - D± IT - Tel. 
with C~ - C: = AC > O. 

T ~ T., (1.5) 

The compressibility of the gas and of the liquid 

( L. S. Ornstein, Dissertation, Leiden 1908; see also Ref. 5. 
5 M. Kac, G. E. Uhlenbeck, and P. C. Hemmer, J. Math. 

Phys. 4, 216 (1963). It should be noted that the correction to 
ideal gas behavior, arising from the hard core and represented 
by the parameter b, is exact in one dimension but only ap­
proximate in two or three dimensions. On the other hand the 
accuracy of the correction represented by the parameter a 
depends mainly on the long-range nature of the attractive 
tail of the potential and not so directly on dimensionality. 
Consequently, although the behavior of a three-dimensional 
model in the corresponding long-range limit should be van 
der Waals-like [in that Eqs. (1.3) to (1.5) should hold], 
one should still not expect van der Waals' equation (1.1) to 
hold precisely. 

along the coexistence curve (i.e. at condensation) 
also diverges as a simple pole as T ~ T. - according 
to the van der Waals equation but the amplitude 
corresponding to Bin (1.4) is smaller. (The constants 
A, B, C~ and D± can of course be written explicitly 
in terms of the van der Waals parameters a and b.) 

It is important to note that these predictions are 
not peculiar to the van der Waals equation but 
follow from almost all approximate equations of 
state. Indeed they are essentially a direct con­
sequence of the implicit or explicit assumption that 
the free energy and the pressure can be expanded 
in a Taylor series in density and temperature at 
the critical point: in other words that the critical 
point is not a singular point of the free energy 
expressed as a function of P and T (except in as 
far as Maxwell's rule is utilized below T = T.).6 

To demonstrate this put 

Ap = P - P., Ap = p - P., AT = T - To (1.6) 

and assume that 

IIp = aCT) + b(T)llp + c(T)llp 2 + d(T)llp3 

+ ... . (1.7) 

By definition a(T.) = 0 so we assume similarly that 

aCT) = a1llT + a211T2 + '" . (1.8) 

Since the compressibility is infinite at the critical 
point, b(T.) must vanish so again we assume 

(1.9) 

Finally since b(T.) = 0 and the pressure above T. 
must be a monotonic increasing function of p we 
have C(T.) = 0 and, presumably, C(T) is small 
in the critical region. We thus obtain for small IIp 
and II T the isotherms 

(1.10) 

Near the critical point the compressibility is hence 
given by 

(1.11) 

from which the prediction (b) follows. Application 
of the equal area rule to the isotherms (1.10) with 
negative AT yields the coexistence curve 

(1.12) 

which ~plies the square-root law (a). The divergence 

S See, for example, Landau's theory of the critical point 
and second-order phase transitions [L. D. Landau and E. M. 
Lifshitz, Statistical Physics (Pergamon Press, Ltd., London, 
1958), pp. 259-268 and pp. 434-439]. 
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FIG. 2. Coexistence curve for xenon: plot of (PL - po) vs 

[1 - (T IT.)]l (after Weinberger and Schneider9). 

of the compressibility along the coexistence curve 
as (T. - T)-l then follows from (1.10). 

By integrating (1.9) with respect to t:.p one finds 
the free energy F(T, p). If one assumes that the 
additive constant of integration is also a nonsingular 
function of T and imposes the continuity of F on 
the coexistence curve (1.12) one finally derives the 
prediction (c) of the discontinuity in Cv(T). 

2. THE NATURE OF THE CRITICAL 
SINGULARITmS 

Perhaps the most striking test of the predictions 
of the classical theories is provided by the data on 
the coexistence curves of simple gases. Some time 
ago Guggenheim7 showed that the gases Ne, Ar, 
Kr, Xe, N 2, and O2 obey closely a law of correspond­
ing states of the form 

(PL - Po)/2pc = A(1 - T/T.)'!, (T~T.), (2.1) 

with {3 = 1. This relation was observed to hold 
with an accuracy of 0.5% (or better) in t:.p/P. and 
in t:.T/T. and over a range of temperatures from 
T /T. ~ 0.6 up to within !% of the critical tem­
perature by when (PL - Po)/2p. had fallen to about 
0.30. In earlier work on CO2, Michels, BIaisse, and 
Michels8 found that the coexistence curve could 
be fitted over a similar range but with somewhat 
greater accuracy by (2.1) with the index {3 = 0.357. 

These results seem to be in clear disagreement 
7 E. A. Guggenheim, J. Chem. Phys. 13,253 (1945). 
8 A. Michels, B. Blaisse, and C. Michels, Proc. Roy. Soc. 

(London) A160, 358 (1937). More accurate measurements on 
CO 2 have since been made by H. L. Lorentzen, Acta Chem. 
Scand. 7, 1335 (1953) and later work. 

with the classical prediction {3 = ! which should 
be applicable in range of (T - T.) and (p - Po) 
observed. They certainly show that the experi­
mental coexistence curve is much flatter than the 
van der Waals curve. However, experiments near 
the critical region are very difficult to perform; a 
long time is needed to establish equilibrium and 
hysteresis phenomena are difficult to avoid; the 
system is very susceptible to minute amounts of 
impurities and, due to the large compressibility, 
highly sensitive to gravitational fields. Indeed as 
shown by Weinberger and Schneider9 it is important 
to take special precautions to reduce the effects 
of gravity if the true shape of the coexistence curve 
is to be measured close to T •. In a very careful 
study of xenon (see Fig. 2) they extended the density 
measurements down to temperatures differing from 
T. by only 1 part in 30000 (i.e., t:.T/T. ~ 0.003%) 
and down to corresponding density differences of 
(p- Pc) /2pc ~ 0.04. [The temperature was controlled 
to within ±0.001 cC.] Their data accurately obey 
the relation (2.1) with a nonclassical value of the 
index {3 over about three decades in (T - To). 
Analysis of their measurements indicateslO that 

{3 = 0.345 ± 0.015 (2.2) 

which is not inconsistent with a value of exactly 
1 as may be seen in Fig. 2. 

While it is always possible that measurements 
taken much closer still to the critical point might 
yet yield the value {3 = ! it seems reasonable to 
conclude that the classical theory does not provide 
the correct description of reality. Furthermore 
measurements of the phase boundaries of binary 
fluid mixtures near both their upper and lower 
critical points are also fitted well by the same 
cube-root law. ll This suggests that the behavior 
close to a critical point is insensitive to the detailed 
nature of the intermolecular forces. To check how 
far {3 is really independent of the interaction poten­
tials it would be desirable to have measurements 
on other systems of an accuracy matching the 
experiments on xenon. One should note, however, 

9 M. A. Weinberger and W. G. Schneider, Can. J. Chem. 
30, 422 (1952). 

10 Note that the plot of Pl. - Po versus [1 - (TIT .)]113 in 
Fig. 2 is a good straight line down to (PL - po)/2p. = 0.04 
but does not extrapolate exactly to the origin [PL = Po at 
T = T.l as it should. This suggests that the index {J is not 
precisely ! .and a log-log plot leads to the value quoted. 
The uncertamty reflects the spread of the experimental points 
about the best straight line. 

n See Ref. 2, pp. 165-166 and especially the work of 
O. K. Rice referred to therein. See, also, D. R. Thompson and 
O. K. Rice, "Shape of the coexistence curve in the perfluoro­
methylcyclohexane-carbon tetrachloride system, II." J. Am. 
Chem. Soc. (1964) in press. 
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TABLE I. Critical indices. 

below Tc above T. (p = Pc) 

Index a' (3 -y' a -y l' I) 

Defined in equations (2.7, 2.12) (2.1) (2.8) (2.7, 2.12) (2.8) (3.10, 5.6) (4.7, 5.3) 
Classical theory Odiseon. i 1 Odiscon. 1 i 0 

0 10, f 1£ 010' 1£ 1 1.. Lattice gases d = 2 • Lattice gases d = 3 >0 '='>!./r ~lt ~O, ::;0.2 It '='>!.0.64 ':::::!.h 
~Olo, Experiment 0.33-0.36 ~1.27(1) ~0.1 ? >1.1? >0.551 >0(1) 

Note: a'. fJ. and 'Y' are related by (2.20) and 'Y. ". and ~ by (5.7). The queries, 1 and (1). indicate greater and lesser degrees of experimental doubt. 

that any value of {3 between! and 1 is inconsistent 
with the assumption that the critical point is a 
nonsingular point of the free energy in the sense 
discussed in the previous section. 

The shape of the coexistence curve may also be 
studied theoretically for more-or-Iess idealized models 
of a fluid. The only model so far sufficiently trac­
table to yield significant predictions in the critical 
region is the very simplest lattice gas in which each 
molecule occupies a site of a lattice to the exclusion 
of other molecules and interacts, attractively, only 
with nearest-neighboring molecules. This model is 
equivalent to the well known Ising model of ferro­
magnetism which has been studied intensively .12,13 

The exact calculation of the free energy of the 
plane square lattice gas along its critical isochore 
(corresponding to zero magnetic field) was first 
achieved by Onsager. 14 In addition, however, 
Onsager16 and Yang16 were able to find the co­
existence curve (corresponding to the spontaneous 
magnetization). They found the relation (2.1) but 
with the index 

(2.3) 

This result, which implies a very flat coexistence 
curve, is, of course, quite inconsistent with classical 
theory.17 It is important, furthermore, to note that 
the index {3 is independent of lattice structure for all 
soluble plane Ising lattices (including the triangular, 
honeycomb, kagome, and checkerboard lattices12 ,13). 

For three-dimensional lattice gases no rigorous 
theoretical results are available. Nonetheless on the 

12 A. comprehensive review of the Ising model is C. Domb, 
Advan. Phys. 9, Nos. 34, 35 (1960), while Ref. 13 is a brief 
review of more recent results. 

13 M. E. Fisher, J. Math. Phys. 4, 278 (1963). 
14 L. Onsager, Phys. Rev. 65, 117 (1944). 
16 L. Onsager, Nuovo Cimento Suppl. 6, 261 (1949); see 

also E. W. MontroII, R. B. Potts, and J. C. Ward, J. Math. 
Phys. 4, 308 (1963). 

16 C. N. Yang, Phys. Rev. 85, 808 (1952); T. D. Lee and 
C. N. Yang, Phys. Rev. 87, 410 (1952). 

11 Since {3 is the inverse of an integer it could still be 
possible for the free energy to be an analytic function of p at 
the critical point. In view of the logarithmic singularity in 
the specific heat, however (Ref. 14 and the discussion below), 
this possibility seems rather remote. 

basis of sufficiently long power-series expansions1s 

it has proved possible to draw quite accurate con­
clusions concerning the shape of the corresponding 
coexistence curves. [The coefficients are analyzed 
numerically with the aid of the recently introduced 
technique of Pade approximants. 19] 

The behavior again appears to be independent 
of lattice structure. [The simple, body-centered and 
face-centered cubic lattices2o ,21 and the tetrahedral 
(diamond) lattice22 have been studied; the latter 
on the basis of the more sensitive ratio method.23] 
Dimensionality, however, is important since, in con­
trast to (2.3), the index {3 is found to lie in the range21 ,22 

0.303 ~ {3 ~ 0.318 

which is consistent with the conjecture {3 
0.31250. 

(2.4) 

h= 

It is remarkable, and perhaps unexpected, that 
a model as simple as a lattice gas with only nearest­
neighbor interactions should yield a result for the 
shape of the coexistence curve so close to the 
experimental results (2.1) and (2.2). The agreement 
suggests that in the critical region the lattice gas 
represents rather adequately the pertinent features 
of a real gas. It appears that only the grosser 
features of the model-in particular the dimen­
sionality and the short range of the forces-are 
really essential for obtaining a good description of 
critical behavior. 

It seems probable, nonetheless, that the difference 
of about 0.025 between the experimental and 
theoretical values of {3 is a real discrepancy due, 
presumably, to the more artificial aspects of the 
Ising Hamiltonian which, in particular, restricts the 
molecules to the lattice positions. There remains 

18 The expansion variable is exp[ - V o/kT] where V 0 is 
the depth of the well in the pair interaction potential. Details 
of the expansions are given in Ref. 11. 

19 G. A. Baker, Jr., J. L. Gammel, and J. G. Wills, J. 
Math. Anal. Appl. 2, 405 (1961). 

20 G. A. Baker, Jr., Phys. Rev. 124, 768 (1961). 
21 J. W. Essam and M. E. Fisher, J. Chern. Phys. 38 802 

(1963). ' 
22 J. W. Essam and M. F. Sykes, Physica 29, 378 (1963). 
23 C. Domb and M. F. Sykes, J. Math. Phys. 2, 63 (1961). 
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FIG. 3. Variation of the constant­
volume specific heat of argon alon~ 
the critical isochore (after Bagaatakii 
et al.26 ). (Note that the lo~arithm to 
the base ten of IT - Tol in OK is 
plotted.) 

Variation of Cv of argon with log IT - Tc I. 
(Tc = ISO. So K). 

the theoretical problem of calculating {3 for more 
realistic continuum models. (For convenience the 
various results for (3 are collected in Table I.) 

Turning now to the question of the specific heats, 
it has long been known that real gases exhibit a 
large "anomalous" specific-heat maximum above 
To which lies near the critical isochore and which 
is not expected on classical theory.24 Similarly in 
the two-phase region below the critical point specific 
heats rise much more rapidly than expected as T 
approaches To. From the earlier measurements one 
could not conclude with certainty that the specific 
heat actually became infinite at To but recent 
measurements by Bagatskii, VoroneI', and Gusak25 

of Cv(T) for argon along the critical isochore (see 
Fig. 3) suggest strongly that 

Cv(T) --+ co as T --+ To±. (2.5) 

Such a result is again inconsistent with classical 
theory. 

The measurements covered a range from 15% 
below to 5% above To at temperature intervals of 
0.04 to 0.05°0 (corresponding to I1T/To ~ 0.03%). 
Over a range of one or two decades in IT - Tol 
the specific heat could be fitted quite well2s by a 
logarithmic singularity of the form 

Cv(T) ~ -A'" log 11 - (T/T.) I + B'" 

(T ~ T.), (2.6) 

where the marked asymmetry of the curve (see 

It See Ref. 2, pp. 100-101; Ref. 8; and A. Michels, J. M. H. 
Levelt, and W. de Graaff, Physica 24,769 (1958). 

II M. 1. Bagatskii, A. V. Voronel', and B. G. Guaak, 
Zh. Eksperim. i Teor. Fiz. 43, 728 (1962) [English transl.: 
Soviet Phys.-JETP 16,517 (1963)]. 

Fig. 3) indicates that B+ « B- and possibly that 
A + < A -. The specific-heat curve in fact resembles 
quite closely the famous lambda anomaly displayed 
by liquid helium at its transition to the superfiuid 
state.26 [In this case the formula (2.6) is followed 
very accurately over four or more decades.26 It 
should be noted, however, that the lambda point 
of helium has a quantum-mechanical origin and is 
not a critical point in the usual sense.] 

The data for argon are not at present, accurate 
enough to confirm (2.6) as closely as might be 
wished.26a To avoid prejudicing the conclusions one 
should preferably consider a singularity of a form 
such as 

Cv(T) ~ (A "'/a){il - (T/T.)I-« - I} + B'" 

(T ~ To), (2.7) 

and ask for the experimental value (and uncertainty) 
of the index a. [When a --+ 0 this expression reduces 
to the logarithmic singularity (2.6).] In particular 
the definite curvature of the plot of Cv(T) versus 
log IT - Tel for T > Te (see Fig. 3) suggests that 
the true value of a might be greater than say 0.1. 
If this is so it seems probable that below Te the 
index has a somewhat different value, a' which is 
probably less than 0.1. It would be valuable to 
have similar and more extensive measurements on 
the other noble gases in order to test the relation 

26 M. J. Buckingham and W. M. Fairbank, in Progress in 
Low Temperature Physics III, edited by C. J. Gorter (North­
Holland Publishing Company, Amsterdam, 1961), Chap. 3. 

16& More recent experiments on oxygen have given very 
similar results: A. V. Voronel', Yu. R. Chasshkin, V. A. 
Popov, and V. G. Simkin, Zh. Eksperim. i Teor. Fiz. 45, 
828 (1963) [English transl.: Soviet Phys.-JETP 18, 568 
(1964)]. 
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FIG. 4. Variation of the inverse of the maximum isothermal 
compressibility of xenon (based on the experiments of Hah­
good and SchneiderB°). 

(2.7) more critically and to decide how far a log­
arithmic singularity might be truly "universaI.,,26a 

Significant theoretical predictions are again avail­
able only for the simple lattice gas models. Onsager's 
rigorous solution14 for the plane square lattice 
(and subsequent results for all other soluble plane 
lattices12

•
13

) yielded a symmetric logarithmic specific 
heat singularity, i.e., a = a' = 0 and A + = A-, 
B+ = B-. Although this famous result demonstrates 
conclusively the weakness of the classical theory 
and is very suggestive in view of the experimental 
results it is, unfortunately, restricted to two-dimen­
sional systems. 

For three-dimensional Ising lattices the specific­
heat series expansions have been calculated both 
above and below To. Numerical analysis of these 
series indicates that Cv(T) is almost certainly 
infinite at To but the precise nature of the divergence 
is more difficult to ascertain. Below the critical point 
the series can be fitted well by a logarithmic sing­
ularity (Le., a' = 0).13.22.27.28 As with the experi-
mental results, however, it is not easy to exclude 
the possibility of a slightly sharper singularity cor­
responding in (2.7) to, say, a' = 0.06. On the high­
temperature side of the transition the series may 
be fitted moderately well by a logarithmic singularity 
if A+/A- .1 27 13 H ~ 3" owever, careful analysis of the 
ratios of coefficients definitely suggests a sharper 
singularity of the form (2.7) with a ~ 0.2.29

•
13 This 

would lead to a shallow parabolic curve for Cv(T) 
versus 10giT - Tel not inconsistent with the 
corresponding (lower) experimental curve in Fig. 3. 

:: M. E. Fisher and M. F. Sykes, Physica 28, 939 (1962). 
G. A. Baker, Jr., Phys. Rev. 129, 99 (1963). 

29 C. Domb and M. F. Sykes, Phys. Rev. 108, 1415 (1957). 

One may hope that with further work based on 
longer series or on more rigorous arguments the 
theoretical conclusions will be drawn more firmly. 
The present results are summarized in Table 1. 

The accurate experimental measurement of the 
isothermal compressibility of a gas near its critical 
point is not easy and the classical prediction (1.4) 
that KT should diverge as (T - T o)-1 along the 
isochore does not seem to have been properly tested. 
In practice plots of IIKT versus temperature are 
distinctly concave upwards in the critical region 
which suggests that the compressibility might diverge 
more sharply than a simple pole, i.e., as 

K(T)f'V B ( T T) ( ) 
T f'V I(T/T

o
) _ II'Y P = Po, -+ 0 2.8 

with 'Y > 1. By way of illustration a plot of 1/ K T 

(suitably normalized) versus T ITo for xenon is 
shown in Fig. 4.30 The experimental results indicated 
by circles and the broken line, were obtained by 
differentiation of the experimental isotherms, a 
procedure which is necessarily subject to appreciable 
uncertainty when K l' is large. The solid curve in 
Fig. 4 corresponds to the nonclassical prediction 
(2.8) with 'Y = 1.25 (see below) and is evidently 
quite consistent with the experimental points near 
To. This fit cannot be considered very significant, 
however, since estimates of 'Y based on the data 
alone are rather indefinite, although they do seem 
to indicate that 'Y is greater than 1.1. 

More extensive and accurate experimental data 
would be extremely valuable since the compress­
ibility is an important theoretical parameter and 
one which is usually somewhat easier to calculate 
than the specific heat or the coexistence curve. 
Indeed the theoretical situation for the simple lattice 
gases is quite unequivocal (see Table I). On the 
basis of Onsager and Kaufman's exact calculations31 

of the correlation functions it can be shown32 that 
the compressibility of the plane square lattice gas 
(which is isomorphic to the magnetic susceptibility) 
should diverge as (2.8) with 

'Y = Ii. (2.9) 

This represents a very large deviation from the 
classical prediction 'Y = 1. Numerical examination 
of the corresponding series expansions confirms (2.9) 
in two dimensions for all other lattices and leads, 

80 Figure 4 is ~ased on the measurements of H. W. Habgood 
!l-nd w,. G: Schne1der, Can. J. Chem. 32, 98 (1954) as presented 
ill their Flg. 4. 

at B. Kaufman a.nd L. Onsager, Phys. Rev. 76, 1244 (1949). 
82 See Sec. 5 and M. E. Fisher, Physico. 25, 521 (1959). 
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in three dimensions, to the estimate 

'Y = 1.250, (2.10) 

which is again independent of lattice structure and 
accurate to ±0.001 or better.12.2o.23 

The compressibility of the simple lattice gases 
can also be studied on the coexistence curve below 
T •. 21 In two dimensions it is found that (2.8) holds 
with the index 'Y' = t so that 'Y' = 'Y although 
the amplitude B- is much smaller than B+. In 
three dimensions the analysis yields 'Y' ~ 1.25 = 'Y 

but cannot at present exclude the possibility that 
'Y' exceeds 'Y (by perhaps 0.05). 

On the basis of heuristic arguments related to 
the Frenkel-Bijl-Band picture of condensation33 

Essam and Fisher21 .34 conjectured that the indices 
for the specific heat, coexistence curve and com­
pressibility below T. were in general related by 

a' + 2{3 + 'Y' = 2, (2.11) 

where the index a' is defined, more precisely, by 

a' = lim [log Cy(T)/llog (T. - T)I], (2.12) 
T_Tc-

and similarly for {3 and 'Y'. A logarithmic specific 
heat still corresponds to a' = 0 so that the relation 
(2.11) is certainly verified for the two-dimensional 
lattice gases (see Table I). The formula remains 
true even for a van der Waals gas since a discon­
tinuity in specific heat is now also equivalent to 
a' = 0 [assuming only Cy(T.-) > OJ. 

Rushbrooke36 has shown that the relation (2.11) 
can be proved as an inequality (with ~ replacing = ) 
by purely thermodynamic reasoning. His argument 
as presented applies only to a ferromagnetic system 
but it may be adapted for a fluid as follows. 

Firstly recall that in the two-phase region the 
specific heat at constant total volume is related to 
the properties of the system in its liquid and gaseous 
phases separately by36 

C y = xLC!' + xGC;; 

(2.13) 

where the subscript IT denotes properties along the 
coexistence curve and where the mole fractions are 
given by 

13 J. Frenkel, Kinetic Theory of Liquids (Oxford University 
Press, London, 1946), Chap. VII; J. Chern. Phys. 7 200 
538 (1939); A. Bijl, Doctoral Dissertation, Leiden, '1938~ 
W. Band, J. Chern. Phys. 7, 324, 927 (1939). ' 

U Other conjectures relating the indices 'Y and {:J have 
been made by B. Widom [J. Chern. Phys. 37, 2703 (1962)]. 

36 G. S. Rushbrooke, J. Chern. Phys. 39, 842 (1963). 
3& See, for example, Ref. 2, p. 41. 

(2.14) 

Now by the standard argument used to relate C . p 

and Cy one may show that in a single phase 

C~ = Cy 
- T(~)T(~~)J~~t (2.15) 

On eliminating the factor (aV laT)" through 

(av) _ (av) (av) (ap) 
aT ~ - aT" + ap T aT / 

(2.16) 

and substituting for C~ and C~ separately in (2.12) 
one expresses C y in terms of C~ and C~. Finally 
on introducing the coexisting densities PL and PG 
and the corresponding isothermal compressibilities 
K~ and K~, one gets 

Cy(T) = XLC~ + xGC~ 
+ xLT (aPL )2 + xGT (a PG)2 

ptK~ aT p~K~ aT . 
(2.17) 

N ow C~ and C~ are necessarily positive since 
they are essentially mean square energy fluctuations. 
Consequently all terms on the right of (2.17) are 
positive and by dropping the first three we obtain 
the inequality 

C (T) > xGT (0 PG)2 
y - 3KG aT . PG T 

(2.18) 

As the critical point is approached at constant 
density XG (and XL) approaches the value j, PG 
(and PL) tends to Pc and (apGlaT) diverges as 
(T. - T)-1+{3.37 If K~, the compressibility at con­
densation, diverges as (T. - T)-"fI we obtain 

log Cy(T) ~ (2 - 2{3 - 'Y') Ilog (Tc - T)I 

+ .... (2.19) 

The higher-order terms vanish on dividing by 
Ilog (Tc - T)I and taking the limit T---t T.- which, 
by (2.12), yields the index a'. We have thus proved 
quite generally 

a' + 2{3 + 'Y' ~ 2. (2.20) 

Various consequences follow from this inequality. 
For the two-dimensional lattice gases the rigorous 

It 14-16, 0 d resu s a = an {3 = t show that 'Y' ~ t 
thereby confirming the numerical estimates. [As 
before, the van der Waals gas corresponds to the 
case of equality.] If, for a three-dimensional lattice 
gas, the values {3 = 0.3125 and 'Y' = 1.25 are 

37. We assume (as is true in reality and for the models 
con~Idered) tp.at as T --> T. [!(PL + PG) - P.] does not 
vanIsh as rapIdly as does (PL - PG)' 
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accepted one must conclude that (x' ~ 0.125. Con­
versely for a logarithmic specific heat singularity 
the compressibility index 'Y' would have to exceed 
1.25 by about 0.1. At present it is difficult to judge 
between these alternatives.21

•
35 

For a real gas the evidence of Fig. 3 suggests 
0.1 > (x' ~ 0 and the coexistence data indicate 
(3 < 0.36. Consequently we should certainly have 

'Y' ? 1.27, (2.21) 

and probably 'Y' ? 2 - 2(0.345) 1.31. It would 
be most interesting to have an experimental test 
of this prediction since it differs appreciably from 
the classical result. 

It should be mentioned that Widom and Rice38 

have observed that the critical isotherms of real 
gases also deviate significantly from the classical 
prediction being much flatter than the cubic (p, p) 
curve which follows from the van der Waals equa­
tion. As yet however, this feature has not been 
investigated theoretically for lattice gases. 

3. PAIR CORRELATION FUNCTION AND 
CRITICAL SCATTERING 

To obtain insight into the microscopic nature of 
a fluid in the critical region it is natural to consider 
the many-particle distribution functions n. (r 11 ••• r.) 
which describe the correlations between the con­
stituent molecules. In particular the pair correlation 
function defined, for a uniform system, by 

(3.1) 

is of central importance. When the system is in one 
phase g(r) ~ 1 as r ~ CD and one may introduce 
the net correlation function 

G(r) = g(r) - 1 (3.2) 

which decays to zero as r ~ CD. The deviation 
of G(r) from zero is a direct measure of the influence 
of one molecule on another. 

As is well known G(r) is rather directly related 
to the thermodynamic variables of the system. 
For our purposes the most important result is the 
so called fluctuation theorem for the isothermal 
compressibility, 

kBT(~)T = kBTpKT = 1 + p J G(r) dr, (3.3) 

which is a quite general consequence of the laws 
of statistical mechanics. [For a two-dimensional 
system the integral in (3.3) is restricted appro-

3S B. Widom and O. K. Rice, J. Chem. Phys. 23, 1250 
(1955). 

priately while for a lattice system it is replaced by 
a sum.] 

Now G(r) is essentially a bounded function (more 
precisely its integral over a finite region is bounded 
in virtue of the existence of a maximum density 
arising from the incompressibility of real molecules.) 
Hence the fact that K T becomes infinite at the 
critical point can only be understood if the integral 
over G(r) diverges at its upper limits. This means 
that at the critical point the net correlation function 
becomes long-range in the sense that it decays to 
zero more slowly than l/r 3 (or in d-dimensions than 
1 I r d

). It is clearly of interest to know the precise 
nature of this critical decay and to understand the 
rate of approach of G(r) to its long-range behavior 
as T ~ To. 

Fortunately the pair correlation function can also 
be studied directly by scattering waves off the 
system. In practice experiments are usually per­
formed with light or with x rays but thermal 
neutrons may also be used.a9 The observed angular 
dissymmetry is then a direct measure of the degree 
of correlation. To the extent that multiple scattering 
may be neglected (first Born approximation) we 
have for the scattering intensity 

I(Jt)IIo(k) = x(k) = 1 + pO(Jt) , (3.4) 

where Io(k) is the scattering intensity in the absence 
of correlation (the molecular form factor), k is the 
wave vector, k = (411'/;>..) sin !e, and where 

(3.5) 

is the Fourier transform of G(r); for an isotropic 
three-dimensional system 

A 1m 

sin kr 2 u(k) = 411' 0 ~ G(r) r dr. (3.6) 

The ratio x(k) may be regarded as a generalized 
"susceptibility" since it measures the response of 
the fluid to an impressed periodic potential of wave 
number k.40 

Comparison of (3.5) and (3.4) with the fluctuation 
relation (3.3) shows that 

x(O) = lim I(k)IIo(k) = 1 + pOCO) = kBTpKT' (3.7) 
k-->O 

so that the scattering intensity extrapolated to zero 
angle is proportional to the isothermal compress-

39 L. Van Hove, Phys. Rev. 95, 249 (1954). To discuss 
neutron scattering fully one must also consider the time 
de:pendence of the pair correlation function. Near the critical 
pomt, however, the decay of fluctuations probably becomes 
slower and it is reasonable to neglect this aspect of the 
problem in first approximation. 

(0 P. G. de Gennes, Nuovo Cimento 9, SuppI. 1,240 (1958). 
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ibility. By virtue of the divergence of K T at the 
critical point the low-angle scattering must thus 
become very large as the critical point is approached 
in the one-phase region. This is the "anomalous" 
critical scattering long known with visible light as 
critical opalescence. In physical terms one may say 
that the large compressibility near the critical point 
allows long-wavelength density fluctuations to grow 
to large amplitude and these produce visible dif­
fraction. 39 

The classical theory of critical scattering is that 
developed by Ornstein and Zernike.41

•
42 Their results 

have since been rederived many times and in various 
ways. In order to discuss the validity of their 
conclusions we will outline two approaches which 
characterize most of the derivations: on the one 
hand the original method of Ornstein and Zernike41

•
4a 

which is perhaps the more mathematical, and on the 
other hand a semithermodynamic method which 
concentrates attention on the fluctuations of the 
free energy and their relation to the gradients of 
the density deviations. This latter approach was 
initiated by Rocard44

-
46 in the spirit of Einstein's 

semiphenomenological ideas, but we will follow the 
presentation of Landau.46 

Ornstein and Zernike41 argue on a heuristic basis 
that the correlation G(rl - r2) between molecules 1 
and 2 can be regarded as caused by (i) a direct 
influence of 1 on 2 described by the so-called "direct 
correlation function" G(rl - r 2) which should be 
short-ranged [essentially having the range of the 
pair potential ¢(r)], and (li) an indirect influence 
propagated directly from 1 to a third molecule at 
ra which in turn exerts its total influence on molecule 
2. Integrating over r3 they thus write the relation 

G(rl -r2) = G(rl-r2)+ p J G(rl -ra)G(r3 -r2) dra. (3.8) 

In the absence of an independent theory enabling 
one to calculate G(r) in terms of the molecular 
parameters this relation is really only a definition 
of the direct correlation function: we will, in the 
main, adopt this attitude. However, Ornstein and 
Zernike regarded G(r) as the more basic function 

41 L. S. Ornstein and F. Zernike, Proc. Acad. Sci. Amster­
dam 17, 793 (1914); Physik. Z. 19, 134 (1918); ibid. 27, 761 
(1926). 

42 F. Zernike, Proc. Acad. Sci. Amsterdam 18, 1520 (1916). 
43 See also J. Yvon, Nuovo Cimento 9, Suppl. 1, 144 (1958) 

and Ref. 40. 
«Y. Rocard, J. Phys. Radium 4, 165 (1933). 
45 See also: M. Fierz in Theoretical Physics in the Twentieth 

Century, edited by M. Fierz and V. F. Weisskopf (Inter­
science Publishers, Inc., New York, 1960), pp. 175 et seq.; 
M. J. Klein and L. Tisza, Phys. Rev. 76, 1861 (1949). 

40 L. D. Landau and E. M. Lifshitz, Statistical PhY8iC8 
(Pergamon Press, Ltd., London, 1958), Sec. 116. 

(in its, presumably, closer relation to the inter­
molecular forces) and they contemplated the possi­
bility of calculating G(r) directly. 

On introducing the Fourier transform of G(r) the 
relation (3.8) (which states that G(rl - r2) and 
G(rl - r2) are reciprocal kernels in the sense of the 
theory of integral equations) can be solved to yield 

1 + pOck) = 1/[1 - p<J(k)]. (3.9) 

On substituting in (3.4) one finds for the inverse 
scattering intensity 

l/x(k) = 1 - p<J(k). (3.10) 

Consequently the divergence of the compressibility 
KT = x(O)/kBTp at the critical point is associated 
with the equation 

1 - p<J(O) = 1 - p J G(r) dr = O. (3.11) 

This shows that the integral of G(r) (i.e., its zeroth 
moment) remains finite at the cirtical point. Thus 
G(r) certainly decays to zero more rapidly than 
G(r) thereby confirming the expectation that it 
should be relatively short-ranged. To develop the 
theory further, however, one makes the central 
assumption that G(r) is strictly short-ranged at 
(and near) the critical point in the sense that its 
transform <J(k) has a Taylor series expansion in 
powers of k2

• In particular, one assumes that the 
second moment 

(3.12) 

exists at the critical point and does not vary rapidly 
in the vicinity. [In three dimensions the average 
over angles yields (cos2 8) = !.J 

We note again that unless G(r) can be calculated 
in an independent way R2 will have the status only 
of a semiphenomenological parameter. The short­
range character of G(r) and the existence of R2 at 
the critical point constitute a major problem of the 
theory and we will return to it. We remark here, 
however, that the virial expansion of G(r) may be 
obtained quite easily from that for G(r)43.42 and 
indicates for low densities at least, that G(r) is, in a 
definite sense, shorter ranged than G(r). 

This may be seen in terms of the graphical rep­
resentations of the respective expansions. All the 
graphs required47

•
48 are connected and have two 

47 Sfle, for example, E. Meeron, J. Math. Phys. 1 192 
(1960), J. M. J. Van Leeuwen, J. Groeneveld, and J. De Boer, 
Physics 25, 792 (1959); T. Morita and K. Hiroike, Progr. 
Theoret. Phys. (Kyoto) 23, 1003 (1960). 

48 G. E. Uhlenbeck and G. W. Ford, in Studies in Statistical 
Mechanics, I, edited by J. De Boer and G. E. Uhlenbeck, 
(North-Holland Publishing Company, Amsterdam, 1962), 
Chap. B.IlI 4. 
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fixed points (corresponding to the two molecules 
fixed at distance r apart) and n = 0, 1, 2, ... 
field points. Each point is associated with a power 
of the density p while the bonds are, as usual, 
associated with the Mayer f factors f i j = exp 
[-¢(r,j)/kT] - 1. If the potential is of strictly 
finite range b [in the sense that ¢(r) = 0 for r > b] 
the factor f;; vanishes unless r Ii ~ b. This fact 
restricts the distance up to which a graph of given 
type can "stretch." Thus in the expansion of G(r) 
the longest-ranged tenn in a given order, say /m+\ 
comes from the open chain of 2m bonds which 
contributes up to distances r = 2mb but not beyond. 
The graphs entering the expansion of G(r), however, 
are restricted to be "nonnodal", i.e., none of the 
field points may be cutting points whose removal 
would separate the graph into two parts.47 The open 
chain of bonds is thus excluded and the longest­
ranged contribution to G(r) in order /"'+1 comes 
from the graph consisting of two parallel chains 
of m bonds each. This graph, however, will make 
no contribution for r > mb. 

We see therefore that in a given order the range 
of G(r) is only half that of G(r). It is clear, neverthe­
less, that one should not expect the virial series to 
converge well in the critical region (if it converges 
at all) so that the assumed short-range nature of 
G(r) cannot be established in this way. For the 
present, however, we follow Ornstein and Zernike 
and accept the existence of the second moment R2 
and the possibility of a Taylor series expansion of 
(](k). From (3.10) and (3.12) we then obtain on 
neglecting terms of order k\ the scattering fonnula 

x(k) = 1 + paCk) ~R-2/(,,2 + k2
), W ~ 0), (3.13) 

where ", which has the dimensions of an inverse 
length, is defined by 

,,2 = [1 - p(](0)]/R2
• (3.14) 

Fourier inversion of the simple Lorentzian scatter­
ing curve (3.13) shows that the behavior of G(r) 
for large r is given in three dimensions by the famous 
result 

1 e-" 
G(r) ~4 R 2 -

7rp r 
(r ~ (0). (3.15) 

From this one concludes that the correlations decay 
exponentially with an inverse range " which, via 
the fluctuation theorem (3.3), should be related to 
the compressibility by 

KT = A/l (T ~ To). 

The constant of proportionality is A 

and is expected to be only slowly varying in the 
critical region. The divergence of K T at the critical 
point thus implies 

K(T) ~ 0 as T ~ T., (3.17) 

so that the critical point correlation function is no 
longer exponentially damped but is predicted to 
follow the law 

Go(r) ~ D/r (r ~ 00, T = To). (3.18) 

In as far as the relation KT '" 1/,,3 is valid and 
the classical variation of KT(T) is accepted, the 
inverse range will go to zero along the critical 
isochore as 

(3.19) 

with " = !. This conclusion was mentioned by 
Zernike 42 and is accepted by other authors.49

-
62 

More generally, however, if one recognizes deviations 
of the isothennal compressibility from van der Waals 
behavior one would get the "nonclassical" result 
" = h > ! [see Eq. (2.8)]. 

The principal alternative approach to the Orn­
stein-Zernike theory is based on considering the 
thennodynamic work, or change in free energy, 
required to establish a density fluctuation in the 
system,H-46,49-52 i.e., a local inhomogeneity. One 
supposes that a local free-energy density F(r) can 
be defined for an inhomogeneous system and con­
siders the expansion of F (or its integral over a 
small but macroscopic volume) about its homo­
geneous mean value F in terms of the local deviation 
ap(r) of the density from its mean value p. In the 
spirit of the classical theory of the equation of state 
one assumes that a Taylor series exists even at the 
critical point. The first power of ap may be dropped 
by virtue of the conservation of particles. The 
coefficient of a/ is, thermodynamically, proportional 
to I/KT and so this term must be retained. 

Since the state of the system will be inhomo­
geneous, however, one must also expect terms 
dependent on V p the gradient of the density devia­
tion, and on higher derivatives. The necessity for 
such terms can indeed be seen rather generally from 
the existence of surface tension which represents, 
of course, an additive contribution to the free energy 
directly associated with the density inhomogeneities 
at an interface. On the grounds of symmetry the 
leading tenn will be proportional to (V p)2. [The 
terms \12 

p and p '\12 
p add nothing further after 

,g P. Debye, J. Chern. Phys. 31, 680 (1959). 
60 E. W. Hart, J. Chern. Phys. 34, 1471 (1961). 
51 M. Fixrnan, J. Chern. Phys. 33, 1357 (1960). 
eM. Fixrnan, J. Chern. Phys. 36, 1965 (1962). 
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integrating over a small volume.46
] Consequently, 

one writes the expansion 

t:.F(r) = !coi + !d(V p? + ... (3.20) 

and assumes that at least for small slowly varying 
deviations (i.e., small k), the higher-order terms may 
be neglected to a good approximation even at the 
critical point. By stability considerations c and d 
must be positive. Although c will vanish at the 
critical point d remains nonzero. 

On introducing the Fourier components of the 
density deviation 

OPk = V-I f eik
•
r op(r) dr, (3.21) 

sUbstituting in (3.20) and integrating over the 
volume of the system one obtains for the total 
free energy fluctuation 

(3.22) 

We notice that each density mode contributes 
additively to the free energy so that the modes 
are statistically independent or, in other words, 
effectively noninteracting. This conclusion is, of 
course, a direct consequence of the truncation of 
(3.20) although it also has an immediate physical 
appeal for long wavelength modes. 

N ow the Boltzmann factor for a fluctuation OPk 
is exp[-t:.Fk/kBT] and consequently the mean 
square fluctuation is predicted, at least for small k, 
to be 

(3.23) 

Now by the definition (3.21) of the Fourier co­
efficients we have 

(IOPkI2
) = (OPk Op-k) = V-I f eik.r(op(O) op(r»dr, 

where one integration over r space has been per­
formed using the (approximate) translational in­
variance of the system. Since the mean-density 
fluctuation is zero 

(op(O) op(r)/ p = ([p + op(O)][p + op(r)])/ p - p, 

= pg(r) + oCr) - p, 

where the second line follows from the definition 
(3.1) of g(r), the delta function being added to 
allow for the identity of the correlated particles 
[which was implicitly excluded in (3.1)]. Substitution 
shows that 

(V/p)(IOPkI 2
) = 1 + pG(k) 

(kBT/ p) 
~c + de' (3.24) 

which is clearly equivalent to the Ornstein-Zernike 
result (3.13).53 

The relationship between the two approaches to 
critical scattering theory is revealed by the more 
recent development of a complete formal theory of 
the statistical mechanics of nonuniform systems 
which shows the significance of the direct correlation 
function in constructing expansions of the thermo­
dynamic variables of inhomogeneous systems. 54

-
G6 

In particular the existence of local thermodynamic 
variables and the convergence of the corresponding 
expansions turns out to be dependent on the short 
range nature of C(r). 

A fruitful method developed by Lebowitz and 
PercusG6

•
G7 is to consider the deviations in density 

produced by an externally imposed potential U(r) 
when this is chosen to be the potential cp(r) which 
would just correspond to a molecule of the fluid 
fixed at the origin. The induced singlet-density 
deviation is then related to the pair correlation 
function in the homogeneous fluid as follows: 

nl(rlcp) = P + onl(r) = n~(r)/n~, 

= p + pG(r) , (3.25) 

where the superscripts zero denote the uniform 
system.G8 

To obtain an equation for n1(rlcp) and hence 
for G(r) one assumes the inhomogeneous system can 
be represented by a grand canonical ensemble and 
one asks for the relation between the external poten­
tial U(r) = cp(r) and the induced-density deviation. 
To this end it might be natural to try to expand 
nl(rlcp) as a functional Taylor series in cp(r) but 
Lebowitz and Percus show, on the contrary, that 
it is possible, and more useful, to expand cp(r) 
(in combination with the chemical potential) in 
terms of the density deviation it produces. 56

-
67 

i3 J. L. Lebowitz (private communication) has pointed out 
that by the methods of Refs. 55-57 one may show that in 
an appropriate grand canonical ensemble the fluctuation of 
the free energy is given to second order in apk/ p exactly by 

.6.FtotadNkB T = ! Lk[1 - peek)] lapk/pI2. 
Comparison with (3.22) shows even more directly the equiva­
lence to the Ornstein-Zernike theory. 

04 F. H. Stillinger, Jr. and F. P. Buff, J. Chem. Phys. 37, 
1 (1962). 

Ii J. L. Lebowitz and J. K. Percus, Phys. Rev. 122, 1675 
(1961); J. Math. Phys. 4, 116 (1963). 

66 J. K. Percus, Phys. Rev. Letters 8, 462 (1962). 
67 J. L. Lebowitz and J. K. Percus, J. Math. Phys. 4, 248 

(1963). 
i8 We use the notation anl(r) rather than ap(r) as previ­

ously, since in the thermodynamic arguments one really is 
considering a macroscopic or coarse-grained density fluctua­
tion whereas here one refers directly to the microscopic 
distribution functions. By the same token one should replace 
apk in Footnote 53 by a1h(k) whereas in Eq. (3.24) and the 
preceding steps g(r) and G(k) represent coarse-grained or 
macroscopic correlation functions. 



                                                                                                                                    

CRITICAL REGION OF SIMPLE FLUIDS 955 

One anticipates that such an expansion would con­
verge most rapidly when taken at each point, about 
a uniform system with the same local density nl(r!q,). 
The successive terms of the expansion, which is 
conveniently derived by the technique of functional 
differentiation, are then found to be mUltiple in­
tegrals over the density deviation with kernels which 
involve G(rl - r 2) and certain higher-order correla.­
tion functions. 

Now when G(r) is a short-ranged function one 
may expand these integrals as a "local" series in 
the spatial derivatives of the density deviation. The 
justification for this step must rest, of course, on 
showing that G(r) decays rapidly to zero for large r 
[and that nl(r!q,) is not too rapidly varying]. If 
this is the case one finds 

q,(r) = }J. - }J.°[nl(r)] + (R2kBT/ln~)'v2G(r) 
+ lW/lkBTn:K~)[VG(r)]2 + "', (3.26) 

where }J. is the chemical potential and R2, defined 
already in Eq. (3.12), is the second moment of the 
direct correlation function. The length l is defined 
similarly in terms of G(r) and the three-particle 
distribution function. Further terms of (3.26) can 
be written down explicitly and involve higher 
derivatives of G(r) with coefficients depending on 
higher moments of G(r) and the further many­
particle distribution functions. 55

-
67 

If we now drop the terms in (V Gl and higher­
order derivatives and expand nl(r) = p[1 + G(r)] 
to first order in G(r) we obtain 

(3.27) 

which should be valid in the asymptotic region 
where G(r) is small. The derivative of }J.0 arises from 
expanding }J.°[nl(r)] and may be eliminated through 
the thermodynamic relation p(iJ}J.°/iJph= (iJPliJP)r= 
1 I pK r. On introducing the length A by 

A2 = R2kBTpKr 

= !(cos2 
8)p f r 2G(r) dr/[1 + G(O)] (3.28) 

[where the last formula follows from (3.12), (3.10) 
and (3.9)] we obtain the equation 

(3.29) 

first derived by Zernike.42 

If the potential q,(r) is negligible for large r the 
asymptotic solution of (3.29) is, in three dimensions, 

G(r) ~ De-erIAl/r. (3.30) 

Comparison with (3.15) shows the equivalence to 

I 
X(k) 

k 2 

FIG. 5. Dependence of the inverse critical scattering on 
k = (41r/}") sin! 8 according to the Ornstein-Zernike theory. 
The linear intercept ~o(T) is proportional to l/KT • 

the previous theory and identifies A = 11K as the 
range of correlation. Fourier transformation of Eq. 
(3.29) leads directly to the previous expression (3.13) 
for the scattering intensity for smalll and k2

• 

The advantage of this last derivation is that the 
neglected terms are explicitly displayed and that 
the central role of the direct correlation function is 
apparent. It does not, however, enable us to decide 
if the assumption that G(r) is short-ranged at the 
critical point is justified. On the other hand away 
from the critical point, but in a region where K T 

is moderately large the analysis indicates that the 
Ornstein-Zernike theory should be correct. Indeed 
the exponential part of the asymptotic decay law 
for G(r) appears to have a rather wide range of 
validity in a one-phase fluid system since it depends 
essentially only on the short-range nature of the 
interactions. 59 

4. VALIDITY OF THE ORNSTEIN-ZERNIKE 
THEORY 

The principal experimental predictions following 
from the classical theory of critical scattering [Le., 
from Eq. (3.13)] are (a) that 1/x(k, T), the reciprocal 
of the relative scattering intensity, should vary 
linearly with k

2 with a temperature-independent 
coefficient of proportionality, and (b) that the extra-

69 This conclusion follows from a formulation of statistical 
mechanics in which the system is taken to be in a cylinder 
of length L and cross section A. For forces with a hard core 
and strictly finite range b, a nonsingular integral kernel 
describes the addition of a layer of thickness b to the cylinder. 
The thermodynamics and correlation functions are related 
to the resolvent of this kernel: M. E. Fisher, abstract in 
Proc. Second Eastern Theoretical Physics Conf., University 
of North Carolina (October, 1963). D. Ruelle and, inde­
pendently, J. Groeneveld (to be published) have also shown 
that in the region where the activity expansion can be proved 
to converge, G(r) [suitably smoothed] decays to zero at least 
exponentially fast for strictly short-range potentials. 
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k 2 

FIG. 6. Schematic variation of the inverse critical scattering 
expected in view of the limitations of the classical theory. 
(Compare with Fig. 5.) The apparent linear intercept £o(T) 
differs from the true intercept £(T) which is proportional 
to l/KT • 

polated intercept with the k2 =O axis, ~o(T), 
should be proportional to l/KT (T) and hence go 
to zero as T ~ T •. The predicted behavior is shown 
schematically in Fig. 5. 

Most modern tests of the theory have been made 
by light or x-ray scattering measurements on binary 
fluid mixtures of relatively complex organic mole­
cules.60- 86 For example, Zimm 60 studied a mixture 
of perfluoromethylcyclohexane in carbon tetra­
chloride, Brady and Frisch,62 perfluoroheptane in 
iso-octane, while Debye and co-workers63 and Mc­
Intyre, Wims and Green64 have investigated 
polystryrene-cyclohexane solutions. 

Earlier measurements on binary fluids and other 
systems have been reviewed by Rice.66 Recently 
Thomas and Schmidt66 have made an extensive 
series of x-ray measurements on argon at various 
constant pressures in the critical region. They also 
give references to other more recent work on single­
component systems such as carbon dioxide, ethylene 
and neon. 

Accurate experiments are not easy to perform 
near the critical point and the interpretation can 
be confused by multiple scattering. Qualitatively, 

80 B. H. Zimm, J. Phys. & Colloid Chern. 54, 1306 (1950). 
61 Chow Quantie, Proc. Roy. Soc. (London) A224, 90 

(1954); R. Furth and C. L. Williams, Proc. Roy. Soc. (Lon-
don) A224, 104 (1954). 

82 G. W. Brady and H. L. Frisch, J. Chern. Phys. 35, 
2234 (1961). 

sa P. Debye, H. ColI, and D. Woermann, J. Chern. Phys. 
32,939 (1960); ibid 33,1746 (1960); P. Debye, D. Woermann 
and B. Chu, J. Chern. Phys. 36, 851 (1962). 

"D. McIntyre, A. Wims and M. S. Green, J. Chern. 
Phys. 37, 3019 (1962). 

66 O. K. Rice, "Critical Phenomena" Sec. E, in Thermo­
dynamics and Physics of Matter, edited by F. D. Rossini 
(Princeton University Press, Princeton, New Jersey; 1955). 

66 J. E. Thomas and P. W. Schmidt, J. Chern. Pnys. 39, 
2506 (1963). 

however, the theory seems quite well confirmed by 
the binary fluid measurements. Plots of the reciprocal 
scattering intensity versus e in the experimentally 
accessible range are well represented by sets of 
parallel straight lines whose intercepts MT) fall 
roughly linearly with (T - T.) as indicated in Fig. 
5. Closer inspection, nevertheless, reveals certain 
"anomalies", although at present these are not much 
1 h h . 1 rt . t' 64 67 68 arger t an t e experunenta unce am les. . . 
In particular one observes (a) a tendency for the 
scattering curves taken near To to be slightly curved 
and to dip downwards somewhat at the lowest values 
of e and (b) the intercepts ~o(T) obtained by 
extrapolation of the best straight line fits to the 
data (all necessarily lying above some k!.iJ do not 
seem to approach zero as T goes to To: rather plots 
of ~o(T) versus T along the isochore are slightly 
concave upwards and tend to level off or to extrap­
olate to a nonzero value at To. These deviations 
are indicated in Fig. 6. 

Green 68 reports that significant deviations from 
the Ornstein-Zernike theory were also found for 
the, presumably physically simpler, system of 
nitrogen at its critical point. 69 No deviations were 
observed by Thomas and SchInidt66 in argon but 
they did not measure along the critical isochore 
and their lowest values of e were relatively large. 

As we show below these deviations are in the 
direction to be expected theoretically on the basis 
of an analysis of the limitations of the classical 
theory. Needless to say, however, it would still be 
desirable to have more accurate and extensive exper­
imental data, especially for low values of e and 
for simple systems like the noble gases, in order to 
elucidate fully the true nature of the critical 
scattering. 

As we have seen the main theoretical problem 
in justifying the derivation of the Ornstein-Zernike 
result is to establish the short-range nature of the 
direct correlation function C(r), or, what is equiv­
alent, to show that its Fourier transform tJ(k) has 
a Taylor series expansion in powers of e at the 
critical point. Our previous discussion of the thermo­
dynamic variables at the critical point, has shown 
that the hypothesis of a Taylor expansion in tem­
perature or density is probably not tenable. By 
analogy we should be prepared for a siInilar failure 
for the correlation functions. 

An obvious defect of the theory can be seen by 

n H. L. Frisch and G. W. Brady, J. Chern. Phys. 37, 
1514 (1962). 

88 M. S. Green, J. Chern. Phys. 33, 1403 (1960). 
U R. L. Wild, J. Chern. Phys. 18, 1627 (1950). 
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considering its application to model systems of 
dimensionality d different from three. In any number 
of dimensions the classical expression for the 
(appropriate) Fourier transform is formally the 
same, namely 

(4.1) 

For fixed K(T) > 0, that is away from the critical 
point, we find70 by inverting (4.1) that as r becomes 
very large 

G(r) ~ Bd(e- Kr /r!(d-Il)[l + O(l/Kr)] 

(r -t co, K fixed> 0). (4.2) 

As we argued at the end of the previous section 
it seems probable that this result is generally valid 
for fixed T > T. and large enough r. However, 
as K -t 0 for fixed large r we find a different result, 70 

namely, for d ~ 3 

G(r) ~ Die- Kr /rd
-

2)[1 + O(Kr)] 

(K -t 0, r fixed) (4.3) 

while for d = 2 

G(r) ~ D 2(log r)e-"[l + O(l/log Kr)] 

(K -t 0, r fixed). (4.4) 

One notices that d = 3 is a rather special case in 
which both limits (4.2) and (4.3) agree and [by 
comparison with Eq. (3.15)] the higher-order terms 
vanish identically! 

Now (4.4) implies that at the critical point of a 
two-dimensional system the correlation function will 
vary as D2 log r. This is clearly nonphysical for 
large r and shows that the assumptions of the theory 
are certainly not to be trusted for two-dimensional 
systems. 

This defect of the theory can be repaired in an 
ad hoc fashion by retaining further (nonlinear) terms 
in the density expansions of the free energy [in 
Eq. (3.20)J or in the Taylor series expansion of 
n1(r) [in Eq. (3.26)].71 It would seem difficult, how­
ever, to justify keeping nonlinear terms in G(r) 
rather than, say nonlinear terms in VG or higher­
order derivatives of G(r): the more so as the whole 
question of the convergence of such an expansion 
is in doubt at the critical point. 

The first author to question the theory in respect 
of the prediction G(r) '" l/r at T = T., for three 
dimensions was Green68 who based his arguments 
on an integral relation for the pair correlation func­
tion derived by cluster diagram summation tech-

70 M. E. Fisher, Physica 28, 172 (1962). 
71 M. Fixman, J. Chern. Phys. 36, 1965 (1962). 

niques.47 This so called, hypernetted-chain integral 
equation may be written 

1 + G(r) = exp [-(3ep(r) + G(r) - G(r) + E(r)] , (4.5) 

where 

E(r) = sIp; G(r)} (4.6) 

is a nonlinear integral functional of G(r) known 
only as an expansion in powers of p representable 
in terms of certain, so called, "basic graphs."~7 
[The leading term is of order /]. The same relations 
hold for a lattice system (with appropriate definition 
of the functional S). 

Green68 considered the consequences of assuming 
that the term E(r) involving the basic graphs, 
might be neglected at the critical point. Stillinger 
and Frisch extended his analysis to two-dimensional 
systems. 72 

To follow the argument let us suppose in greater 
generality that at the critical point of ad-dimensional 
system 

G(r) ~ D/rd-2+~ (r -t co), (4.7) 

where the index 11 (0 :s; 11 ~ 2) measures the de­
parture from the Ornstein-Zernike prediction. [As 
in Eq. (2.7) l/ro corresponds to log r.] It follows that 

pO(k) ~ b/e-\ (k -t 0) (4.8) 

so that at fixed density one has, through the rela­
tion (3.9), 

C(k) ~ G(O)[l - coe-~ + ... ], (k -t 0). (4.9) 

If 11 > 0 asymptotic inversion yields 

G(r) ~ F /rd+2-~ (r -t co). (4.10) 

Thus when 11 > 0, the direct correlation function 
is also "long ranged" in the sense that its second 
moment does not exist, although it certainly decays 
to zero more rapidly than G(r) , in fact by a factor 
1/r4

-
2
,. Notice that if 11 = 0 we find instead 

G(r) ~ F'e--'rir, (K,2 = l/co) (4.11) 

so that only in this special case is G(r) short ranged 
in the sense that C(k) has a Taylor series expansion 
at e = o. 

To analyze the hypernetted integral relation it is 
convenient to define 

S(r) = G(r) - G(r). (4.12) 

Clearly S(r) must have the same asymptotic be-

72 F. H. Stillinger, Jr. and H. L. Frisch, Physics 27, 751 
(1961). 
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havior as G(r). If the potential c/>(r) is short ranged 
we may expand the exponential in (4.5) for large r 
to get 

C(r) = E(r) + USer) + E(r)J2 + .... (4.13) 

If we now suppose E(r) can be neglected or, more 
weakly, that E(r) decays faster than [S(rW it 
follows that 

C(r) = ![S(r)]2 + ... . (4.14) 

On substituting (4.7) and (4.10) we obtain the 
consistency relation 

11 = 2 - !d, (4.15) 

which fixes the asymptotic form of the correlation 
functions. 

On this basis we would predict that at the critical 
point in a three-dimensional system G(r) f"OooJ l/r2 
rather than l/r.68 Correspondingly G(k) '"'-.J l/k = 
1/(k2)! so that a plot of inverse scattering versus e 
at, and near T = Te , should be significantly curved 
downwards for small k2 (see Fig. 6). 

In two dimensions (4.15) leads to G(r) f"OooJ l/r4/3 

(T = T.) which is more reasonable than the Orn­
stein-Zernike result log r. However as pointed out 
by Stillinger and Frisch,12 this prediction can be 
tested against the rigorous result obtained by 
Onsager and Kaufman81 for the correlation function 
of the nearest-neighbor plane square lattice gas 
at its critical point. [Note that G(r) at P = Po is 
proportional to the spin pair correlation function 
(S~S:) of the Ising ferromagnet in zero field.] This 
exact result is31.32.12.73 

(T = T e , d = 2) (4.16) 

so that the true value of the index 11 is i rather 
than t or zero. 

We conclude that both the Ornstein-Zernike 
theory and Green's argument are incorrect for a 
two-dimensional lattice. Consequently both must 
be suspect for three-dimensi~nal lattice systems. 

It is interesting to note that if, as seems to be 
the case, the true value of 11 is less than 2 - id 
one really has, as r ~ co 

(4.17) 

so that the contribution of the basic graphs is also 
long ranged although it decays faster than G(r). 
Since after all, E(r) is a functional of G(r) this is 
not really surprising. 

Of course, the rigorous result (4.16) is known only 

73 See also Ref. 12, pp. 200-201 but notice that an exponent 
! is missing on the left of Eq. (108). 

for nearest-neighbor interactions and one should ask 
to what extent the behavior of lattices with inter­
actions reaching to further neighbors would be 
similar. It seems plausible that the correct answer 
is that the behavior sufficiently near the critical 
point is qualitatively unchanged provided the range 
of the potential is finite [for example, if c/>(r) = 0 
for r > bJ. The reason for this surmise is that the 
range of correlation near the critical point becomes, 
as we have seen, very large compared to the lattice 
spacing and, indeed, very large compared to the 
potential range b. The asymptotic correlations are 
then determined by long chains of interactions and 
should thus be insensitive to the detailed variation 
of ¢(r). [The same conclusion is really implicit in 
Ornstein and Zernike's and in Green's approach.] 

The independence of the indices (x, p, 'Y and 11 

of the lattice structure is evidence for this conclusion. 
Further evidence comes from numerical studies of 
the compressibility of lattice gases with first and 
second neighbor interactions which indicate un­
changed values for the index 'Y in two and three 
dimensions.74 

It is more difficult to assess the relationship 
of the lattices gases to more realistic continuum 
models. At low temperatures and high densities the 
properties of a lattice gas will always deviate from 
continuum behavior but in the critical region the 
long range of the correlations again suggests an 
insensitivity to the details of the potential and 
hence, for a lattice subdivision sufficiently fine 
relative to the range of the potential, one would 
expect qualitatively very similar behavior.76 This 
conclusion is supported by the apparently quite 
close resemblance between the critical singularities 
of real gases and of even the simplest nearest 
neighbor three-dimensional lattice gases discussed 
already in Sec. 2. 

5. MORE GENERAL ANALYSIS OF 
CRITICAL SCATTERING 

It is clear from the foregoing that the Ornstein­
Zernike theory is probably not valid at the critical 
point of a three-dimensional system. On the contrary 
one should evidently expect that G(r) behaves 
asymptotically as 1/r1

+
q with 0 < 'IJ < 1.70

•
72 

A natural way to extend the Ornstein-Zernike 
theory within the same framework is to consider 
further powers of e in the expansion of the Fourier 

74 M. F. Sykes and N. Dalton (to be published). 
7i In one dimension one may verify explicitly that the 

behavior of the lattice gas approaches that of the continuum 
gas as the lattice Bpacing is made smaller relative to the 
scale of the potentiaL 
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transform of the direct correlation function C(k). 
Inclusion of such terms leads to a representation 
of G(r) as a sum of increasingly more rapidly 
damped exponentials of the form (for d = 3) 

De- Kr D -/CiT D -KilT 

G(r) ~ -- + _le_ + _2e_ + '" (5.1) 
r r r 

with K < Kl < K2 '" • At a fixed temperature, 
however, such an expansion leads to the same 
asymptotic behavior for G(r) and to similar scatter­
ing at small k2 as does the original theory. (For 
smaller enough r and large enough k2 one must, 
of course, expect derivations from any general theory 
since the detailed nature of the potential must 
eventually make itself felt.) 

As one considers T approaching To along P = Po, 
however, it is possible that more and more exponen­
tials in (5.1) become "excited," so that the first 
exponential is no longer a good approximation except 
for extremely large r.76 This certainly represents 
essentially what happens for the two-dimensional 
lattice gas. Here the higher-order range parameters 
Kl, K2, ••• obey the relation12.14.77 

Kn(T) - K(T) r-..; nKo 11 - (T/To)!. (5.2) 

so that the "spectrum" of exponentials closes up 
as T ~ To and in fact becomes dense at the critical 
point. 

A similar behavior for a continuum model is 
suggested by the recent calculations of Hemmer, 
Kac, and Uhlenbeck76 for a potential with a strongly 
repulsive core and a weakly attractive long-range 
exponential tail. A series similar to (5.1) can be 
derived but the amplitudes of successive terms are 
proportional to higher powers of the compressibility 
K l' and hence the expansion breaks down near the 
critical point. 

These considerations [which really amount to a 
restatement of our previous conclusion that C(k) 
probably does not have a Taylor series expansion 
at the critical point although it does for T > To] 
indicate that (5.1) is not the best basis for analyzing 
the deviations from the Ornstein-Zernike theory. 
Indeed the asymptotic form l/r1+~ at T = To with 
'1/ ;c 0 could only arise from (5.1) if the expansion 
broke down in some way. To investigate the possi­
bilities more generally let us, therefore, extend (4.7) 

76 P. C. Hemmer, M. Kac and G. E. Uhlenbeck, J. Math. 
Phys. S, 60 (1964), P. C. Hemmer, J. Math. Phys. S, 75 
(1964). 

77 The correlation functions may be expreBBed as a sum 
of integrals over the complete set of eigenvalues of the basic 
transition matrix for an Ising lattice (see Ref. 31). The 
exact limiting density of these eigenvalues is known from 
Onsager's work (Ref. 14). 

by writing 70 for T ~ To and p = P. 

G(r) ~ (De-· r /l-2+~)[1 + Q(KT)] (r ~ (Xl) (5.3a) 

where D = D(T) is a relatively slowly varying 
function of temperature and where Q(x) ~ 0 as 
x ~ 1 and Q(x) does not grow exponentially fast 
as x ~ (Xl. This expression is still in the spirit 
of the Ornstein-Zernike theory in as far as the main 
assumption implicit in (5.3a) is that in the critical 
region the correlation functions for large r can be 
described in terms of only two lengths: (i) the range 
of correlation l/K(T) which becomes infinite at the 
critical point, and (ii) an effective range of direct 
interaction ro(T) which remains finite at the critical 
point. In (5.3a) ro has been absorbed into the 
coefficient D. [Compare with R of the Ornstein­
Zernike theory: Eqs. (3.12) and (3.15).] We could 
write in analogy with (3.15) 

(5.3b) 

where a is a dimensionless constant. 
If the classical theory is valid away from the 

critical point, as concluded in Sec. 3, the formula 
(5.3a) should reduce to (4.2) when K > 0 and r is 
very large, i.e. only the first term in (5.1) should 
remain. [For the plane square nearest-neighbor 
lattice gas at P = Po one may verify that (4.2) is 
indeed valid above To.77] This would imply that for 
large x 

1 + Q(x) ~ qxt (d-3)+, (x ~ (Xl). (5.3c) 

Sufficiently close to the critical point the nature 
of this behavior will not matter. It is clear, however, 
that if Q(x) becomes of order unity for small x 
the region of significant deviation from classical 
theory may be rather small. [Stated alternatively, 
the further exponentials in (5.1) would be signifi­
cantly excited only very close to the critical point.] 

Accepting (5.3) we may calculate the fluctuation 
integral (3.3) (making the substitution x = Kr). For 
the divergence of the compressibility along the 
critical isochore this yields 

x(O) = kBTpK1' ~ fJo/i-~ (T ~ To), (5.4) 

where fJo is a slowly varying function of T [of mag­
nitude dependent on Q(x)]. Similarly a calculation 
of the Fourier transform of (5.3) for small e yields, 
near To, the non-Lorentzian critical scattering 
formula 

x(k) ~ fJ/(l + k2)1-h W ~ 0), (5.5) 

where fJ is a slowly varying function of T and k 2
•
78 

78 If Q(x) is neglected one has for small 'I 
fj(k2) = Doll - '1k2 /(J{l + k2 ) + " '}. 
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As in our discussion of the Ornstein-Zernike theory 
the way in which the inverse range of correlation 
K(T) vanishes as T -+ To for p = Po is related to 
the nature of the corresponding divergence of the 
compressibility as I/(T - T.V. Assuming, as in 
(3.19) that 

K(T) ~ KO 11 - (TIT.)I· (T -+ T.) (5.6) 

and substituting in (5.4) shows that the critical 
indices are related by 

'Y = (2 - 1/)v. (5.7) 

This relation may be checked for the plane square 
lattice gas since, as we have seen,31.32.72.73 1/ = t 
and'Y = Ii (see Table I). Consequently we should 
have 

v = 1, (d = 2) (5.8) 

in contrast to the classical result v !. Now the 
result v = 1 was in fact derived rigorously by Onsager 
in his original paper on the Ising model. 14 His 
derivation is based on the relation 

(5.9) 

where a is the lattice spacing, and where Ao(T) 
and A1(T) are the largest and next largest eigen­
values of the basic matrix which adds a row to the 
lattice at temperature T.77 

If we assume79 that v is still unity for the three­
dimensional lattice gas and utilize the result80 'Y = It 
we would predict 1/ = i. Thence the critical point 
decay law would be G.(r) "" l/r7/4 in closer agreement 
with Green's result. However the assumption v = 1 
in three dimensions is not much better justified 
a priori than the classical assumption v = !. Further­
more, examination of the other critical indices (see 
Table I) indicates that the classically predicted 
behavior is more closely approached the larger the 
dimensionality of the system.81 Consequently one 
might anticipate that for the three-dimensional 
nearest-neighbor lattice gas v lies between ! and 1 
and 1/ is less than t. [As mentioned previously the 
assumption 1/ = 0 leads to v = h = i when d = 3.] 

To decide between these various speculations it is 
necessary to calculate K(T) or some other feature 
of the correlation functions. Fortunately the Ising 

7; This assumption was made tentatively in Ref. 70 and 
tested experimentally by Frisch and Brady (Ref. 67). A good 
fit was obtained but although the data revealed definite 
nonclassical behavior, they were not sufficiently accurate tC' 
distinguish between p = 1 and some appreciably lower value. 

80 See the discussion in Sec. 2 and Refs. 23 and 28. 
81 From Table I we see 'Y = H, 11 for d = 2, d = 3 to 

which we may add 'Y = 1.094 (d = 4); see M. E. Fisher and 
D. S. Gaunt, Phys. Rev. 133, A224 (1964). The classical 
result 'Y = 1 corresponds to d ---> co. 

model is again sufficiently tractable to allow some 
progress. It is possible at the critical density, to 
derive a diagrammatic expansion for the decay 
factor e-·a in powers of liT via Eq. (5.9).82 The 
required graphs consist of an infinite chain of 
connected bonds stretching right across the lattice 
together with nonoverlapping closed polygons, as 
occur in the expansion of the partition function. 12 

Evaluation of the seriesS3 for K(T) (with the aid 
of Pade approximants) reveals a behavior near To 
clearly intermediate between the two-dimensional 
and classical results in a region T = T. to 2T •. 
Direct estimation of the index v, however, proves 
to be not very accurate but indicates a range 
v = 0.6 to 0.7. [The coefficients of the series are 
difficult to calculate and not very smooth.] 

An alternative approach is to study the tem­
perature dependence of the higher moments of the 
correlation function, namely 

J.I,(T) = p J r'G(r) dr. (5.10) 

The zeroth moment is essentially the compressibility 
but the second moment is also a direct measure 
of the range of correlation. It is evident furthermore, 
that J.l2 is proportional to the curvature of p(}(k) 
for small k and hence to the true limiting slope 
of the curve of l/x(k) versus e as e -+ 0.S4 From 
(5.3) we see that when T -+ T., Jl.2(T) diverges as 

J.l2(T) ~ M2Ii-~ (T -+ T.), 

~ M~/ll - (TIT.)1 3
, (5.11) 

with 

(5.12) 

The coefficients M 2 and M ~ are slowly varying 
functions of T. By comparing (5.12) with the index 
relation (5.7) we see that TJ and v can both be 
determined if 'Y and 0 are known. [In particular 
only if 0 = 2'Y would we have TJ = 0.] 

For the two- and three-dimensional lattice gases 
expansions for Jl.2(T) is series of powers of liT at 
p = P. are not too difficult to calculate.s3 [The labor 
and graphical analysis is similar to that for the 
compressibility.] The coefficients prove to be rather 
smoothly varying and for the plane lattices numerical 
analysis confirms quite accurately the relation (5.12) 

82 M. E. Fisher (to be published). 
83 M. E. Fisher and R. J. Burford (to be published). 
84 The second moment P2 is closely related to the length A 

defined in (3.28) and to the "persistence length" L defined 
by Debye (Ref. 44) explicitly: AS = 1 (cos2 8) P2/(1 + po) 
and L2 = P2/PO' From (3.28) one sees that l/x(k) = 
l/x(O){l + A2k2 + O(k()}. 
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[which predicts a = 3.75]. This is an important 
result since it provides support for the original 
hypothesis (5.3). 

Initial estimates for the simple cubic lattice gas83 

yield a = 2.538 ± 0.003 and hence 

v = 0.644 ± 0.003, 11 = 0.060 ± 0.007. (5.13) 

Results for other three-dimensional lattices confirm 
these estimates with lower accuracy. [One might 
mention that (5.14) is not inconsistent with the 
conjecture 11 = -h = 0.0625 which is rather natural 
in view of the estimate {3 ~ 1

5
6 discussed in Sec. 2.] 

The values (5.13) are in accordance with our 
expectation that the three-dimensional results should 
be closer to the classical predictions.81 The magnitude 
of 11 for the lattice gas is indeed rather close to zero 
but it is not unlikely that a more realistic continuum 
model would lead to somewhat larger value, say 
11 ~ 0.1.84 Until more rigorous theories are developed 
and more realistic models become soluble we must 
content ourselves with these rough estimates. 
Accordingly let us review the nature of the critical 
scattering to be expected on the basis of our analysis. 

The peak in the critical scattering is described 
by (5.5) and (for 11 > 0) should be narrower at 
a fixed temperature near To than the Lorentzian 
curve of same peak height. Correspondingly a plot 
of the inverse scattering intensity versus e should 
be somewhat convex although, as suggested in Fig. 
6, for larger values of k2 > k!in the curves might 
appear to be reasonably linear. For small values 
of 11, of the magnitude (5.13), it might indeed be 
rather difficult experimentally to detect the increas­
ing curvature of the scattering plots as k2 ~ 0 
even though the curve for T = To will theoretically 
have an infinite slope at k2 = O. In practice a nonzero 
value of 11 can probably best be detected by the 
observation that the apparent linear intercepts ~o(T) 
[see Fig. 6] would not approach zero when T ~ To 
as must the true intercepts HT) = l/x(O). In 
particular the scattering plot taken at T = To 
would tend to extrapolate to a small positive value 
at k2 

= O. [Of course to detect this behavior it is 
important to have an independent measurement of 
To and not to judge To by extrapolating ~o(T) to 
zero with T as would otherwise be tempting!J 
This behavior is reminiscent of the experimental 
"anomalies" described in the previous Section 
although, as yet, these can probably not be regarded 
as fully established. 

The likely fact that 'Y exceeds unity for a real 
80 For example the effectively more "continuum-like" 

Heisenberg model of ferromagnetism yields 'Y ~ 1 i compared 
with the Ising value 'Y = Ii (d = 3). (See Refs. 90, 91). 

gas and the consequent curvature of l/KT versus 
T would indicate that a plot of the true intercepts, 
HT), versus T should flatten out as T approaches 
To (and theoretically have zero slope at T = To). 
This effect might well be less obvious in a plot 
of the apparent intercepts MT) although it does 
seem to have been observed.86 

6. SUMMARY AND CONCLUSIONS 

We have shown that the classical theories of the 
gas-liquid critical point are unsatisfactory both on 
experimental and theoretical grounds. Thus the co­
existence curve must be described experimentally by 

PL - Po rv (To - Tt, (6.1) 

with {3 ~ 0.33 to 0.36 (rather than with (3 = t) 
while for three-dimensional lattice gas models one 
finds (3 ~ 0.31 ~ -ft. The specific heat Cv(T) 
measured along the critical isochore of a fluid be­
comes infinite at To, diverging approximately as 
loglT - Tol. A similar result holds for the lattice 
gas. Theoretically one also expects that the com­
pressibility above and below To should diverge as 

(6.2) 

with 'Y > 1. This prediction while qualitatively 
correct awaits quantitative experimental verifica­
tion. (Values of these indices are given in Table I.) 

On theoretical grounds the classical (Ornstein­
Zernike) theory of critical scattering has been shown 
to be unsatisfactory close to the critical point 
(although it probably is valid away from the critical 
region when the compressibility is still moderately 
large). More generally one should expect the 
scattering intensity to vary as 

I(k) rv 1/(K2 + k2
/-

h , (6.3) 

where 11 > 0 and where the range parameter vanishes 
along the critical isotherm as 

K(T) rv (T - Tor (6.4) 

with v(2 - 11) = 'Y. Theoretical analysis suggests 
that the index 11 might be no larger than 0.1 (see 
Table I). Consequently it is probably not easy 
experimentally to detect deviations from the classical 
theory (for which 11 = 0). Nevertheless there are 
experimental indications of the failure of the classical 
predictions for small e near To and these are 
consistent with 11 > O. Final confirmation of the 
theory must, however, rest on further, more exten­
sive and accurate measurements on sufficiently 
simple fluid systems. 

86 D. McIntyre, Ref. 64 and a private communication. 
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In conclusion one should mention the rather close 
analogy between the gas-liquid critical point and 
the Curie point of a ferromagnetic crystal. 87 Indeed 
almost all our analysis and conclusions apply directly 
to ferromagnetic systems if appropriately translated. 
The density deviation P - Po should be identified 
with the magnetization M while the magnetic field 
H is isomorphic to the chemical potential of the 
fluid. The critical isochore, p = Pc, corresponds to 
zero magnetic field (since the mean magnetization 
then vanishes) and the coexistence curve corresponds 
to the curve of spontaneous magnetization Mo(T). 
The specific heat Gv(T) along the critical isochore 
of a fluid is isomorphic to the specific heat GH(T) 
of a ferromagnet in zero field and the compressi­
bilities at condensation and above To for p = Po 
correspond essentially to the initial susceptibilities 
xo(T) = (aMjaH)T, (H ~ 0). 

The van der Waals and equivalent classical 
theories find their precise parallel in the Weiss 
molecular field theory and its extensions.88 Similarly 
the Ornstein-Zernike theory and its developments 
have been adapted to describe the critical scattering 
of neutrons by ferromagnets. 89 .9o The net pair cor­
relation function G(r) is replaced by the spin-spin 
correlation functions I'~~(r) = (S~S~). Theoretically 
one is able to estimate the susceptibility index 'Y 

for the nearest neighbor Heisenberg model above 
To with the approximate result91 .92 

'Y = t (independ­
ent of spin and lattice structure in three-dimensions). 

87 As mentioned in Sec. 2, this relationship is formally 
exact for a lattice gas and an Ising model ferromagnet. 
See, for example, T. D. Lee and C. N. Yang, Phys. Rev. 87, 
410 (1952). 

88 See, for example, J. H. Van Vleck, Rev. Mod. Phys. 17, 
27 (1945); P. W. Kasteleijn and J. Van Kranendonk, Physica 
22, 317 (1956). 

89 L. Van Hove, Phys. Rev. 95, 1374 (1954). 
90 R. J. Elliott and W. Marshall, Rev. Mod. Phys. 30, 

75 (1958). 
91 C. Domb and M. F. Sykes, Phys. Rev. 128, 168 (1962). 
92 J. L. Gammel, W. Marshall, and L. Morgan, Proc. Roy. 

Soc. (London) A275, 257 (1963). 

It is interesting that this nonclassical prediction has 
been quite accurately confirmed recently.92-95 
Furthermore modern neutron scattering experi­
ments95 have also given a definite suggestion of 
deviations from the Ornstein-Zernike theory con­
sistent with a small positive value of the index 1]. 

The spontaneous ferromagnetic moment Mo(T) 
is not easy to measure near To but nuclear magnetic 
resonance experiments by Benedek and Heller96 have 
shown that the somewhat analogous sublattice mag­
netization (or long range order) of an antiferromagnet 
(actually MnF2 ) varies as (T - TJ3 with {3 = 

0.335 ± 0.010. The relation holds with remarkable 
accuracy up to within millidegrees of the critical 
or Neel point [aT ITo = 0.007%].97 Experiments on 
antiferromagnets also reveal specific heat infinities 
at To which are approached in approximately log­
arithmic fashion. 98 The close similarity of these 
results to the corresponding behavior of fluid systems 
presents a striking challenge to our theoretical 
understanding. 
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On the Stability of Flow of a Thermally Stratified Fluid 
under the Action of Gravity*t 

DONALD KOPPEL 

Hudson Laboratories, Columbia University, Dobbs Ferry, New York 

The equation for the small disturbances from the plane-parallel flow of a thermally stratified fluid 
under the influence of gravity acting perpendicular to the plane of stratification is derived. It was 
found necessary to include not only viscosity but also heat conductivity to preclude the resulting 
differential equation from having a singularity. Asymptotic solutions of the sixth-order differential 
equation thus derived are obtained. They show the presence of a Stokes point. The limiting form of 
the differential equation near the Stokes point is next obtained and an exact solution of this equation 
is derived by means of a Laplace transformation. In the general case the integrand of the Laplace 
transformation involves Whittaker's confluent hypergeometric functions. In the special case of a 
Prandtl number of 1, the integrand is considerably simpler and for this case asymptotic representa­
tions of the solutions on both sides of the Stokes point have been derived from the Laplace trans­
formation solution by the method of steepest descent. The connection formulas between the solutions 
are the same as that previously derived by Tollmien and Lin for the case when stratification, gravity, 
and heat conduction are neglected. 

I. INTRODUCTION 

T HE problem of the stability of the parallel flows 
of a fluid, neglecting viscosity, was first con­

sidered by Lord Rayleigh. 1 He found the following 
differential equation for the small disturbance: 

(U + n/k)(d2w/dz2 
- ew) - (d2 U /dl)w = 0, (1) 

where U(z) is the velocity profile of the undisturbed 
flow, which is assumed to take place along the 
x direction, and w is that velocity component of 
the small disturbance that is perpendicular to the 
undisturbed flow. The small disturbance is assumed 
to be of the form of a function of z times the quantity 
ei(kz+nO. Equation (1) has a singularity whenever 
(U + n/k) = O. The physical significance of Eq. (1) 
was put in doubt by Lord Rayleigh's further dis­
covery2 that indeed (U + n/k) must be put equal 
to zero at some point within the domain of the 
flow in order to satisfy the boundary conditions in 
many important physical problems. This implies 
that U, the velocity component of the small dis­
turbance that is parallel to the undisturbed flow, 
becomes infinite at the singular plane. In any real 
fluid, viscosity will intervene to prevent this from 
happening. It has been found necessary to invoke 
viscosity in order to get a physically meaningful 

* Hudson Laboratories, Columbia University Contribu­
tion No. 105. 

t This work was supported by the Office of Naval Research 
under Contract Nonr-266(84). 

1 Lord Rayleigh, Proc. London Math. Soc. 11, 57 (1880). 
[Reprinted in Scientific Papers (Cambridge University Press, 
Cambridge, England, 1899), Vol. 1, p. 474.] 

2 Lord Rayleigh, Phil. Mag. 26, 1001 (1913). [Reprinted 
in Scientific Papers (Cambridge University Press, Cam­
bridge, England, 1920), Vol. VI, p. 197.] 

small-disturbance equation. This equation now has 
the form 

(U + n/k)(w" - k2w) - U"w 

= -(ill/k)(w"" - 2k2w" + k4w), (2) 

where II is the kinematic viscosity and primes denote 
differentiation with respect to the coordinate z. 
The singularity has been removed from the problem. 
The plane (U + n/k) = 0 still has some significance 
in connection with the asymptotic solutions of Eq. 
(2), because it is a Stokes point for such solutions. 
At such a point the asymptotic representation of a 
given solution of Eq. (2) may change. The key 
point is then to determine the connection between 
the various asymptotic solutions as the Stokes point 
is crossed. This has been done for Eq. (2) by Toll­
mien 3 and Lin.4 

If the fluid whose flow is being considered is now 
assumed not to be homogeneous and incompressible 
as above, but to have a density stratification, even 
though it is still assumed to be incompressible, the 
small-disturbance equation becomes 

(u + ~)(d2W _ ew) _ U"w + ! du (U + ~) dw 
k dz2 

U dz k dz 

1 du dU g 1 du 
- -;; dz dz w - (U + n/k) -;; dz w = O. (3) 

Here the z axis is taken to be in the vertical direction 
and the density u(z) as well as the undisturbed 

3 W. Tollmien, Nachr. Ges. Wiss. Gottingen (Math. 
Phys. Kl.) 21 (1929). (English transl.: U. S. Natl. Adv. 
Comm. Aeronautics Technical Memorandum No. 609, 1931.) 

( C. C. Lin, Quart. Appl. Math. 3,117,218,277 (1945-46). 

963 
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• 
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FIG. 1. Coordinate system for a flowing strati­
fied fluid under the action of gravity. 

velocity U(z) depends only on the vertical coor­
dinate. The acceleration due to gravity is taken 
as of magnitude g and is supposed to act in the 
negative z direction, while w is the vertical compo­
nent of the velocity of the small disturbance. 

The presence of the gravity term in Eq. (3) gives 
it a worse singularity than Eq. (1). Moreover, the 
inclusion of viscosity does not now eliminate the 
singularity. The small-disturbance equation, includ­
ing viscosity, as used by Schlichting6 is 

0-( U + ~)(~;o - k2W) - o-U"w 

+ do- (U dw _ dU w) 
dz dz dz 

(4) 

where p. is the viscosity.6 The singularity of this 
equation is not as bad as that of Eq. (3) but it is 
still present. Attempts to deal directly with the 
singularity occurring in the equation fot the inviscid, 
stratified fluid have been made.7

•
8 

If the variable density of the fluid is supposed 
due to a temperature gradient acting on a fluid 
with a nonvanishing coefficient of thermal expansion, 
then it will be shown that the inclusion of a non­
vanishing thermal conductivity leads to a small­
disturbance equation of the sixth order, which is 
free of singularity. Likewise if the variable density 

Ii H. Schlichting, Z. fUr Ang. Math., Mech., 15, 313, 1935. 
(English transl.: NACA Technical Memorandum 1262, 
1950. ) 

8 This is Schlichting's small-disturbance equation tran­
scribed into the present notation and neglecting a term 
included by Schlichting because he considers the viscosity 
to be variable. See Footnote 2 of Schlichting's paper. 

7 A. Eliassen, E. H!<liland, and E. Riis, Publication No.1, 
Institute for Weather and Climate Research, The Norwegian 
Academy of Sciences (1953). 

8 L. A. Dikii, PMM 24, 249 (1960) [English tranal.: 
J. App!. Math. Mech. 24, 357 (1960).) 

were due to one substance being dissolved in another, 
say salt in water, then the diffusivity of the salt 
in the water could be used instead of the thermal 
conductivity. Once again the plane (U + n/k) = 0 
has significance as a Stokes point for the asymptotic 
solutions of the above-mentioned sixth-order dif­
ferential equation. 

The aim of the present paper is to derive the 
small-disturbance equation including both the effects 
of viscosity and heat conductivity, to determine 
asymptotic solutions of this equation, and to find 
the connection formulas for the asymptotic solutions 
across the Stokes point for the special case when 
the Prandtl number is equal to one (the Prandtl 
number is the ratio of the kinematic viscosity to 
the thermometric conductivity). 

II. DERIVATION OF THE SMALL-DISTURBANCE 
EQUATION 

The small disturbances of the following situation 
are considered: a fluid is flowing steadily in the 
x direction with a velocity U(z) that is a function 
only of the vertical coordinate z. The density o-(z) is 
constant in any horizontal plane but depends on 
the vertical coordinate because the temperature 
8(z) is a function of that coordinate. The acceleration 
of gravity is of magnitude g and acts vertically 
downward. The boundaries of the fluid are at z = 0 
and z = h (see Fig. 1). The fluid is assumed to be 
incompressible. The N avier-Stokes equations of 
motion are 

pray/at + (v·V)v] = -gradp + pg + p.\12v, 

where p, v and p are the actual density, velocity 
and pressure of the fluid. These equations reduce 
to the following system for the undisturbed motion: 

~ d2U a ~-
- 0 + p. _ = 0 ~ = 0 _:x!! - o-g = 0 (5) ax dz2 'ay 'az ' 

where Po is the static pressure. Let the velocity v 
have the components U + u, v, and w, the pressure 
be p = Po + p', and the density be p = 0- + p'. 
The explicit form of the equations of motion is then 

[au au au a ] 
(0- + p') at + (U + u) ax + v ay + w az (U + u) 

_~ _ ap' + d
2
U + \1 2u ax ax J.I. dz2 P. , 

I [av av av av] 
(0- + p) at + (U + u) ax + v ay + w az 

-~ - ~ + J.I.\1 2v ay ay , 
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The velocities u, v, and ware assumed to be small 
compared with U, while the pressure p' and the 
density P' are assumed to be small compared with 
Po and u, respectively. Under these conditions, 
linearization of the above equations yields the set 

(
au au dU) __ ?E. 2 

U at + U ax + W dz - ax + jJ. \l u, 

(
av av) __ ?E. 2 

U at + U ax - ay + f.£\l v, (6) 

u(aw + U aw) = _?E. _ p'g + f.£\l2w 
at ax az ' 

where use has been made of Eq. (5) to cancel out 
the lowest-order terms. 

The equation of state of the fluid is taken to be 

(7) 

where e denotes the actual temperature of the fluid 
at a given goint, a is the coefficient of thermal 
expansion, and Po denotes the density of the fluid 
at the standard temperature eo. Applied to the 
undisturbed situation the equation of state becomes 

(8) 

Let e' denote the departure of the temperature from 
the value 9, so that 

e = e + e'. (9) 

Substitution in~Eq. (7) yields 

u + p' == Po[1 - aCe + e' - eo)]. 

Using Eq. (8), several terms can be canceled, giving 

p' = -apoe'. (10) 

Now substitute this in the last of Eq. (6): 

(aw U aw) _ _~ , 2 
U at + ax - az + agpoe + f.£\l w. 

The fundamental approximation of Boussinesq 
will be made9

: the variation of density is neglected 
in all terms in the equations of motion except the 
term involving gravity. It cannot be neglected in 
the latter term because it is precisely this term 
that may give rise to the stability or instability, 

• Lord Rayleigh, Phil. Mag. 32, 529 (1916). [Reprinted 
in Scientific Papers (Cambridge University Press, Cam­
bridge, England, 1920), Vol. VI, p. 432.] 

but if the temperature difference between the bound­
aries is not very great, neither will the density 
difference be very great and it may be safely neg­
lected. Let the standard temperature eo be taken 
between the temperatures of the boundaries. Then 
we may approximately identify u with the constant 
Po. The Eqs. (6) become 

au + U au + w dU = _1. ~ + v\l2u 
at ax dz Po ax ' 

av + U av = _1. ~ + v\l2v (11) 
at ax Po ay , 

aw aw 1 ap' I - + U- = ---+age' +v'\l w at ax Po az ' 

where v = f.£/ Po. The equation for the conduction 
of heat may be written 

aejat + (v o '\l)e = K'\l2e, 

where K is the thermomentric conductivity, and both 
the generation of heat by viscosity and the work 
done in the expansion and contraction of the fluid 
elements have been neglected. This equation reduces 
to the following form for the undisturbed flow: 

\l2e = o. (12) 

In the general case it may be written 

ae' ae' ae' a - + (U + u) - + v - + w - (e + e') at ax ay az 

= K'\l2e + K'\lle'. 

The linearization of this equation is 

ae' + U ae' + de = '\l2e' 
at ax w dz K , 

where use has been made of Eq. (12). 
Finally the equation of continuity is 

:: + div (pv) = o. 

Written out in full this becomes 

ap' + (u + ,)(au + av + aw) 
at p ax ay & 

(13) 

+ (U + u) ap' + v ap' + w(au + ap') = 0 
ax ay az OZ ' 

with the subsequent linearization: 

op' + u(au + av + ow) + U op' + w du = O. (14) 
a t ax ay az ax dz 

Take the derivative of Eq. (8): 

du/dz = -apo de/dz. 
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Now multiply Eq. (13) by (-apo), and after using 
Eq. (10), substract it from Eq. (14): 

u(aujax + av/ay + aw/az) = -K\12p'. 

Using Eq. (10) again this becomes 

u(au/ax + av/ay + aw/az) = apoK\128'. 

Now the approximation of Boussinesq involves put­
ting a = 0 but ag ~ 0, since the change in density, 
which is assumed to be small, is proportional to a. 
This allows the right-hand side of the above equation 
to be neglected. The form of the equation of con­
tinuity used is thus 

au/ax + av/ay + aw/az = O. (15) 

The basic equations are (11), (13), and (15). 
Eliminate the variables u and v by differentiating 
the first of Eqs. (11) with respect to x, the second 
of Eqs. (11) with respect to y, adding, and making 
use of Eq. (15): 

a2w U a2w dU aw 
- az at - ax az + dz ax 

= _!.. (a2~' + a2~') _ 11\12 aw. 
Po ax ay az 

The notation 

\1~ = a2/ax2 + a2/ay2 

is used hereafter. Operate on the last of Eqs. (11) 
with \1~ to give 

a V2 U a V2 

at lW + ax lW 

la 2, 2, 22 
= - Po az \1IP + ag\118 + 11\1 \11W. 

Now the pressure P' can be eliminated between this 
equation and Eq. (16): 

a 2 u a 2 2, 22 
at \11W + ax \11W = ag\118 + 11\1 \1IW 

+ i. [11\12 aw _ a
2
w _ U a

2
w + dU awJ. 

az az az at ax az dz ax 

This can be rearranged to become 

i. \12 + U ~ \12 _ d
2

U aw 
at W ax w dz2 ax 

= ag\1~8' + 1I\14W. (17) 

Operate with ag\1~ on Eq. (13): 

:t (ag\1~8') + U :x (ag\1;8') + ag ~~ \1~w 
= K\12(ag\1~8'). 

The temperature 8' can be eliminated between the 
above equation and Eq. (17): 

i. [i. \12w + U ~ \12w - U" aw - 1I\14WJ 
at at ax ax 

U a [a 2 U a 2 + ax at \1 w + ax \1 w 

U
aw 4J de 2 

- "ax - 11\1 w + ag dz \11W 

= K\12[i. \12w + U ~ \12w - U" aw - 1I\14wJ. 
at ax ax 

This equation can be rewritten as 

(:t + U :J[ (:t + U :J\12W 

aw 4 J de 2 - U" ax - 11\1 w + ag dz \11W 

= K\12[(i. + U ~)\12W - U" aW - 1I\14WJ. 
at ax ax 

The identity 

+ 2(at ag + at ag + at ag) 
ax ax ay ay az az ' 

where f and g are arbitrary functions of the coor­
dinates, allows the above formula to be written 
more explicitly: 

(~ + U ~)[(~ + U ~)V2W - U" aw 
at ax at ax ax 

( ) 4J de2 
- K + 11 \1 w + ag dz \11W 

= -K1I\16w + 2KU'\12 a
2
w 

ax az 

_ 2KU'" a
2
w _ KU"" aw. (18) 

ax az ax 

This is a partial differential equation whose co­
efficients are independent of x, y, and t. Separation 
of variables is possible and the vertical velocity w 
will be assumed to have the form 

ei (kz+lll+nt) 

times a function of z. The operator \1~ becomes 

\1~ = -(e + l2), 

and 

(a/at + U a/ax) = i(n + kU). 
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Equation (18) becomes 

i(n + kU)[i(n + kU)\72w - ikU"w 

- (K + 1I)\74W] - ag(dE>/dz)W + l2)W 

6 ·k U' 2 dw = -KII\7 w + 2't K \7-
dz 

Also 

Putting 

c = -n/k and {3 = dE>/dz, 

Eq. (19) can be written 

(U - c>[ (U - c)\72w - U"w 

+ i(K + II) ",4 ] + a{3g(e + l2) 
k V w e w 

= KII ",6W _ 2iKU' ",2 dw 
k2 v k v dz 

2 ·U'''d . 
+ _'t_K __ ~ + ~ U"" 

k dz k w. 

When K = 0, l = 0, and the identification 

do/dz = -apo dE>/dz 

is made, the above equation reduces to 

(U - c>[ (U - c)\72w - U"w + ~ \74WJ 

(19) 

(20) 

g dO" - --w = 0, 
Po dz 

which is to be compared with Eq. (4), when do/dz 
is neglected in the latter, except in the term involving 
the gravity. Next put U = 0 in Eq. (20): 

2\72 i(K + II)C \74 
c w - k w 

which becomes 

[(c - ~ \72)(C - ~ \7 2)\72 + a{3g(k~2+ l2) Jw = o. 

This is the usual form of small-disturbance equation 
for a heated layer of fluid. 10 

If the velocity profile U(z) is symmetric around 

10 A. Pellew and R. V. Southwell, Proc. Roy. Soc. (Lon­
don) A176, 312 (1940). 

some plane, then all the even-order derivatives of 
U are symmetric and all the odd-order derivatives 
are antisymmetric around that plane. Equation (20) 
contains even-order derivatives of w in conjunction 
with even-order derivatives of U and odd-order 
derivatives of w in conjunction with odd-order de­
rivatives of U. Therefore, it is invariant to the 
substitution z ~ - z, provided that {3 is also sym­
metric with respect to the given plane, which is 
taken as z = O. If the boundary conditions are 
also symmetric all solutions may be classified into 
even and odd solutions. 

III. THE BOUNDARY CONDITIONS. 
SQUIRE'S THEOREM 

At a rigid wall the boundary conditions are that 
the fluid adhere to the wall, or symbolically u = 
v = w = 0, since the walls are assumed to be at 
rest. Since this is true for all x and y, it follows that 

au/ax = av/ay = 0 

at the wall, and from Eq. (15), 

aw/az = O. 

The behavior of the temperature at the boundaries 
must also be prescribed. The simplest situation is 
one where the temperature at the boundary is 
held fixed, say by contact with a heat reservoir. 
This gives 0' = 0, independent of x and y, so that 
\7~O' = o. Equation (17) gives 

(a/at)\72w - 1I\74W = 0, 

when account is taken of the fact that U and aw/ax 
vanish at the boundary. The following equations 
summarize the boundary conditions for a rigid wall 
maintained at a constant temperature: 

w = aw/az = (a/at)\72w - 1I\74W = O. (21) 

At a free surface, upon which there are assumed 
to be no surface waves, we stilI have w = 0, but now 

T .. = p.(au/az + aw/ax) , 

T •• = p.(av/az + aw/ay), 

which are components of the stress tensor, must 
vanish for all x and y. This leads to the equations 

aT .. /ax = aT •• /ay = 0, 

which, when combined with 

a2w/ax 2 = a2w/ay2 = 0, 

give 
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Differentiating the equation of continuity (15) with 
respect to z we see that 

iiw/al = o. 
When combined with w = 0, this gives 'V 2w = 0 
on the boundary. If the same behavior of the tem­
perature at the boundary is assumed as before, 
Eq. (17) gives 

The Richardson number for the flow as a whole is 
defined by inserting into the above formula the 
maximum value of (dU /dz). When in addition the 
identification 

0I{3 = _0'-1 dO'/dz 

is made, the Richardson number is defined by 

(25) 

The following equations summarize the boundary Using the quantities defined above, Eq. (23) can 
conditions for a free surface, with no surface waves, be written in dimensionless form 
maintained at a constant temperature: 

(22) 

Consider the case of a parabolic velocity profile 

U(z) = (4Uo/h
2)z(h - z), 

where Uo denotes the maximum velocity of the 
undisturbed flow. With the notation 

a2 = k2 + l2, 

the small-disturbance equation (20) becomes 

(U - c>[ (U - C)(~2 - a2)w + 8~o w 

+ i(1( + p) (~_ 2)2 ] 
k dz2 a w 

0I{3ga
2 

KP (d2 
2)3 + ~w = k2 dz2 - a w 

The dimensionless variables 

r = z/h b = ha 

(26) 

Separating variables in the boundary conditions (21) 
gives 

These equations can also be written in dimensionless 
form 

1 (d2 2)1 + hkRe dr2 - b w = O. (27) 

will be needed. The velocity profile assumes the Now define the quantities 
dimensionless form 

Re* = hk Re/b, 

Note that Re* ~ Re and Ri* ~ Ri. In terms of 
The Reynolds number Re, and the Prandtl number these quantities the small-disturbance equation (26) 
Pr are needed: becomes 

Re = Uoh/p Pr = p/I(. (24) 

In addition the Richardson number Ri is defined 
by the equation 

g 1 dO' 
(dU /dz)2 -;; dz . Ri= 

The quantity (dU/dz) varies with position, but 
attains its maximum value at z = 0, where it is 
given by 

dU /dz = 4Uo/h. 

i ( 1 )( d
2 2)2 ] + 8w + b Re* 1 + Pr dr - b w 

+ 16R.* _ 1 (~ _ b2)3 
1 W - Pr b'Re*2 dr2 w 

8i (d2 2) dw 
- Pr bRe* (1 - r) dr - b dr' (28) 
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while the boundary conditions (27) reduce to 

W = ~; = i(~)(:~ - b
2)W 

1 (d2 
2)2 + b Re* df - b w = O. (29) 

Equations (28) and (29) are the small-disturbance 
equation and boundary conditions for the case when 
the small disturbance is assumed to have no compo­
nent of velocity in the y direction and all quantities 
are assumed to be independent of the y coordinate. 
For this identification to hold, the parameters Re* 
and Ri * must be identified with the Reynolds number 
and Richardson number of the two-dimensional flow 
through Eqs. (24) and (25). Hence, we have the 
following generalization of Square's theoremll ,12: 
the three-dimensional small-disturbance problem is 
equivalent to a two-dimensional problem with a 
smaller Reynolds number and a larger Richardson 
number. In this comparison the Prandtl number and 
magnitude of the wave number must be unchanged. 
In view of this theorem attention will henceforth 
be confined to two-dimensional disturbances. 

A small-disturbance equation for the temperature 
0' can be obtained by eliminating w between Eqs. 
(13) and (17). The result, assuming a constant tem­
perature gradient {3, and only two-dimensional mo­
tion l = 0, is 

(U - c{ (U :- C)\12 0, + 2U' ~ 

+ i(II t K) \140'] + a{3g0' 

= ~ \160, _ 4illU' 1:.... \120, + iKU" \120' 
k2 k dz k 

_ ~ [6U" d
2

0' + 4U'" dO' 
k dz2 dz 

+ U"" 0' - 2eU" 0' J. (30) 

IV. ASYMPTOTIC SOLUTIONS 

Solutions of the small-disturbance equation valid 
for large Reynolds numbers (vanishing viscosity) 
are of interest. This is because in any stability 
calculation where the density gradient is stabilizing, 
the instability would first enter at rather large values 
of the Reynolds number. The following trial function 
is used for substitution in the differential equation: 

11 H. B. Squire, Proc. Roy. Soc. (London) A142, 621 
(1933). 

11 C. Yih, Quart. Appl. Math. 12, 434 (1955). 

W = A(z)exp [(kjill)'B(z)]~ (31) 

First put l = 0 in Eq. (20) and then· substitute 
the above expression in it. Equating to zero the 
terms of order (k/ill) gives 

(U - C)2 AB,2 + i(K + II) (!;.)AB"(U - c) 
k til 

= ~ (~yAB'6. 
Supposing that A r!' 0, this becomes 

B,6 + (1 + Pr)(U - c)B" + Pr (U - C)B,2 = o. 
The following solutions of this equation exist: 

(i) B,2 = 0, (ii) B,2 = - (U - c), 
(32) 

(iii) B,2 = -Pr (U - c). 

Now equate to zero the terms of order (k/ill)': 

[2 Pr B'(U - C)2 

+ (1 + Pr)(U - c)4B,a + 6B,S]A' j A 

= -15B,4B" - U'B,a - (U - cYB" Pr 

- 6(1 + Pr)(U - C)B,2B". 

If B' = 0 this equation is identically satisfied. 
The case B,2 = - (U - c) leads to the following 
equation: 

(1 - Pr)A'jA = -(1 - Pr)-!B"jB'. 

If Pr = 1 this equation is identically satisfied. 
Otherwise it can be integrated to obtain the relations 

A = (B 'f 5/2 , A 0:: (U - crS/4 . 

The case B,2 = -Pr (U - c) leads to the equation 

(1 - Pr)A' / A = -t(1 - Pr)B" jB'. 

It also is identically satisfied if Pr = 1, and likewise 
can be integrated if Pr r!' 1: 

A 0:: (U - C)-Of'. 

When Pr r!' 1 four asymptotic solutions have been 
determined above: 

1/13 = (U - C)-Sf
4 exp [ -(i:r J (U - c)' dz ] ' 

"'4 = (U - C)-S/4 exp [ + (i:Y J (U - c)t dZJ ' 

1/15 = (U - C)-O/4 exp [ -(i~r J (U - c)t dz ] ' 

"'6 = (U - C)-O/4 exp [ +(i~r J (U - c)i dZJ . 

(33) 

Since for two cases the equation determined by 
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letting the terms of order-of -magnitude (k / iv )! vanish 
is identically satisfied, we must go to terms of order 
(1) in Eq. (20) for these cases. When B,2 = 0 this 
gives 

(U - c)[(U - c)(A" - k2 A) - U" A] + a/3gA = o. 
This is the small-disturbance equation neglecting 
viscosity and heat conductivity. The two solutions 
determined from it will be called 1/;1 and 1/;2' 

The case Pr = 1, B,2 = - (U - c) leads to the 
following equation in third order: 

4B,4A" + 24B,3B" A' 

+ [a/3g + 25B,2B,,2 + lOB,3B''']A = O. 

The trial solution A = (B')' is used for this equation. 
Two cases are solvable by means of this trial solu­
tion. First put a/3g = 0 and substitute the trial 
function in the resulting equation: 

2(28 + 5)B,3B'" + (28 + 5)2B,2B,,2 = O. 

Hence if 
2s + 5 = 0, 8 = -!, 

the equation is identically satisfied. This gives 

A = (BT s
/

2 

as a solution when a/3g = O. 
When a/3g ¢ 0, substituting the trial function 

in the differential equation gives 

(48 + 10)B,3B'" 
+ (482 + 208 + 25)B,2B,,2 + a/3g = O. 

temperature 8' to second order from the vertical 
velocity w, it will be found necessary to determine 
the latter quantity to third order. Assume a trial 
function 

W = [ A + AI(~YJ exp [(~rB ] ' (34) 

where A and B are given by the second-order 
theory. Then for B,2 = - (U - c), Pr ¢ 1, third­
order theory gives the equation 

75 (1- _ I)B,2B,,2 + 13 (1 _ 1-)B,3B'" 
4 Pr 2 Pr 

+ (1 - ~)eB'4 + a/3g 

+ 2(~ - 1 )B,5 :z (~I) = O. (35) 

Since A and B' are known, this equation allows the 
determination of Al by a quadrature. 

When B,2 = -Pr (U - c), Pr ¢ 1, the following 
equation is obtained: 

( 
131) B,2B,,2 (33 ) B,aB'" 

195 - - -- + - - 49 --
Pr 4 Pr 2 

+ a{3g Pr + (~ - 1 )eB'4 

+ 2(1 - ~)B'5 ~ (~I) = O. 

Now the temperature 8' can be obtained. Separat­
ing variables in Eqs. (13) and (17) gives us a pair 
of equations connecting 8' and w: 

The case of a linear velocity profile will be treated. ik(U - c)8' + /3w = ,,\128', (36) 
Differentiating the second of Eqs. (32) gives ik(U _ c)\12w - ikU"w = -agk28' + v\14w, 

B'B" = -lU', B,,2 + B'B'" = 0, 

in that case. Using these formulas in the above 
equation gives 

(482 + 168 + 15) + 4a/3g/(U,)2 = O. 

Since U' is a constant, this equation can be satisfied 
by an appropriate choice of 8. Defining the Richard­
son number 

Ri = a/3g/(U')\ 

we get the following quadratic equation for 8: 

4i + 168 + (15 + 4 Ri) = O. 

Note that when Ri = t this quadratic equation 
has a double root. When Ri < t the roots are real 
and when Ri > t the roots are complex. 

The solutions (33) have been determined to the 
second order. However in order to determine the 

where l has been set equal to zero. Corresponding 
to the inviscid solutions 1/;1 and 1/;2 for w there are 
two inviscid solutions rf>1 and rf>2 for 8'. These are 
obtained by putting v = " = 0 in the above equa­
tions. This gives 

The solutions rf>s and rf>6 corresponding to the solu­
tions 1/;5 and 1/;6 are obtained by substituting formula 
(34) for w into Eq. (36) and retaining only the terms 
of highest order of magnitude, which are of order 
(k/iv). The result is 

rf>5 = Pr (1 - Pr) (U _ C)21/;5 
agv , 

rf>6 = Pr (1 - Pr) (U _ C)21/;6. 
agv 
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The solutions q,3 and q" corresponding to tits and tit, 
may be obtained in a similar manner, except that 
now the terms of order-of-magnitude (klip) and 
(klip)t vanish. The first nonvanishing term gives 
the result 

agk2(J1 = _ikA[75 Bill _ 13 B'B" _ k2B,2 
4 2 

Using Eq. (35) this can be reduced to 

(J' ifJ w 
= k(l - 1/Pr) (U - c) , 

which gives 

i{:j 1/13 
q,a = k(l - 1/Pr) (U - c) , 

i{:j 1/1, 
q" = k(1 - IjPr) (U - c) 

V. BEHAVIOR OF SOLUTIONS NEAR THE 
STOKES POINT 

The asymptotic solutions (33) are singular at a 
point z. where (U - c) = 0, even though the 
original differential equation is not singular at such 
a point. In order to examine the solutions in more 
detail near this point expand the velocity profile in 
powers of (z - z.): 

(U - c) = U:(z - z.) + !U~'(z - Z.)2 + ... 
Also the substitution 

z - z. = E." 

will be made. The quantity E will be taken as small, 
so that this substitution magnifies the region around 
z = z •. Since E is small we can expand w in powers 
of E: 

w = Wo + WiE + w2l + .... 
The quantities K and p will be assumed to be of the 
same order of magnitude, while / will be taken 
to be of the order of magnitude of P. Thus indeed 
E ~ 0 when the viscosity is taken as smalL 

Using only the first term of the above expansion 
of w in powers of E, Eq. (20) becomes 

(U,)2 2 d
2
w + iU:(K + p) ~w + R 

c ." d7J2 kE3 '" d.,,4 a,..gw 

_ _ 2iKU~ d3w + -.!5!:'-. dew 
- kE3 d.,,3 k2

E6 d1/6 , 

where 1 has been put equal to zero, and the subscript 
has been dropped on w. 

Defining the following Richardson number: 

Ric = a{3gl(U:)\ 

the above equation becomes 

2 d2w i(K + p) d4w . 
1/ d1/2 + kE3U~ ." d.,,4 + RlC W 

2iK d3w KP dew 
= - kE3U: d1/3 + k2E6(U:)2 d1( (37) 

Two possible definitions of E will be considered. 
First define it as 

so we get 

2 d
2

w + '(1 + 1) ~w + R' 1/ d.,,2 ~ Pr 1/ d1/4 lC W 

1 ~w 2i d3w 
= Pr d.,,6 - Pr d1/3' (38) 

Leaving p fixed let K ~ 0 so that Pr ~ a>. The 
limiting form of Eq. (38) is then 

(39) 

This equation holds when heat conduction is neg­
lected but viscosity is not. 

Next define E as 

E = (KlkU!)t. 

Equation (37) becomes 

2 d
2

w + '(1 + Pr) d'w + R' ." d1/2 ~ 1/ d1/4 lC W 

. d3w dew 
= -2~ d1/3 + Pr d1/6' (40) 

Leaving K fixed let p ~ 0 so that Pr ~ O. Equation 
(40) becomes 

2 d
2
w + . d

4
w R' . d3

w 
." d.,,2 ~." d.,,4 + lC W = -2~ d1/3' (41) 

This equation holds when viscosity is neglected but 
heat conduction is not. 

Equation (38) for the solutions near the Stokes 
point can be reduced to an equation of the second 
order by means of the following Laplace trans­
formation: 

w(1/) = t e~'v(t) dt. 

Substituting this expression in Eq. (38) we find the 
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following conditions that the Laplace transformation 
be a solution: 

d
2
(t

2
v) _ '(1 + .!.) d(t") 

dt2 t Pr dt 

(42a) 

(42b) 

Change the dependent variable in Eq, (42a) to u, 
defined by 

where c is an arbitrary constant. Then the equation 
transforms to 

cfu [ .( 1 )] 2 du {[ 2 I dtl + 6c - t 1 + Pr t dt + 9c - Pr 

- 3iC( 1 + tr) Jt. + (6c - 2'£}t + Rt~C~ = O. (43) 

Choose c to satisfy the equation 

9c2 
- 3i(1 + l/Pr)c - I/Pr == O. 

This has the solutions 

c = i/3, i/3 Pr. 

The solution 0 = i/3 will be used, since this makes 
the term (60 - 2i)tu in the above differential equa­
tion vanish. Then Eq. (43) becomes 

d
2
u .( 1 ) 2 du Ric 

dt2 + t 1 - Pr t dt + '"7 u = O. 

When Pr = 1 this reduces to 

t2 cfu/de + Ric u == o. 
Using the trial function 

u = tm
, 

the condition that this equation be satisfied is 

m(m - 1) + Ric == O. 

The solutions for m are 

(44) 

This equation has the solutions 

valid for arbitrary Pr and Ric = O. The solution 
Ul gives the following expression for w(?!): 

w('I7) = f r 2 
exp (~ t3 + 'l7 t) dt. (47) 

To deal with Eq. (44) for arbitrary Pr and Ric, 
first make the following transformation of the 
independent variable: 

t' = DtS
, 

where D is an arbitrary constant. The transformed 
equation is 

9t,a ~% + [6t' + ~ (1 - tr)t,a] ~( + Ric u = o. 

Next use the new dependent variable V, defined by 

u = (t'ft exp [ - 6~ (1 - tr)tl ]v. 
The result is 

9t,2 ~t~ + {(RiC + 2) - ~ (1 - tr)t l 

+ 4ba (1 - trYt12}V = O. 
Making the identifications 

i(1 - l/Pr) 
9D 

i - m2 = (Ric + 2)/9, 

the above differential equation becomes 

(48) 

m = t ± (1 - Ric)! (Ric < 1), 

= i ± i(Ric - 1)1 (Ric> 1). 

which is Whittaker's equation for the confluent 
(45) hypergeometric function, with solution W x .... (t'). 

Thus the function w('I7) is given by 

w('I7) == t t"'-2 exp (~ t3 + 'l7t) dt, 

when Pr = 1. 
When Ric = 0 Eq. (44) reduces to 

(46) 

Solve the set of Eqs. (48): 

D == ±f (1 _ 1-) K = T.! m = ± (1 - 4 Ric)! 
3 Pr '3' 6' 

where the signs of D and K are correlated. Finally 
we can go back to get the solution in terms of the 
set of variables t, v: 
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v = r 3 
exp [~(1 + ~)t3J 

X W"'i. ±O-4Rie)I/6[ ±~ (1 - ~r)taJ, 
where a constant factor has been discarded. 

VI. SINGULARITmS IN THE ABSENCE OF 
HEAT CONDUCTION OR VISCOSITY 

Equation (39), which holds for vanishing heat 
conduction, has a singularity at 71 = o. 

When Ric = 0, it reduces to 

71 d2w/dr/ + i d4w/d7J4 = 0, 

after division by 71. This no longer has a singularity. 
Therefore when gravity is absent viscosity is suffi­
cient to remove the singularity. 

Using a series solution of the form 
... 

w = L a.7J(P+'), 
.-0 

for trial, reveals three solutions of Eq. (39) that 
are not singular at 71 = O. The fourth solution has 
the behavior 

w = 1 + !i Ric 71
3 In 71 

near 71 = o. 
Equation (41), which holds for vanishing viscosity, 

also has a singularity at 71 = O. When Ric = 0, 
it reduces to 

2 d2w + . d'w . d3w 
71 d7J2 ~7J d7J4 = -2~ d7J3' 

This equation still has a singularity. Therefore when 
gravity is absent heat conduction is not sufficient 
by itself to remove the singularity. Equation (41) 
has a solution behaving as 

w=7J In 7J 
near 71 = O. 

VII. CHOICE OF CONTOURS 

Condition (42b) must still be satisfied for the 
definite integrals to be solutions of the differential 
equation. Confining attention to the case Pr = 1, 
use can be made of the explicit expression for v 
obtained above. Then condition (42b) becomes 

{t
m

-
1 

exp (~tS + 7Jt)[ 7Jt - m + ~r tsJ}: = O. 

Thus it is sufficient that itS ~ - GO at the end 
points for the above condition to be satisfied. This 
happens for arg t = 11"/6, 511"/6, 311"/2, 1311"/6, ..• as 
It I ~ GO. 

Since m is not in general an integer, it follows 
that the integrand of Eq. (46) will have a branch 
point at t = O. The complex t-plane is cut along the 
line arg t= 11"/6, and the sheet 11"/6 ~ arg t < 211"+11"/6, 
will be referred to as the principal plane. Similarly 
the sheets 

11" 11" 11" 11" 
211"+6~argt<411"+6 and 6-271"~argt<6 

are referred to as the upper and lower planes, 
respectively. 

Writing 

the contour C1 is defined as follows: the contour 
starts at infinity and goes to r = r1 along the straight 
line 8 = 571"/6; it next describes an arc of the circle 
r = r 1 from 8 = 571"/6 clockwise to 8 = 11"/6; finally 
it goes out to infinity again along the line 8 = 11"/6 • 
The value of the function defined by this contour 
is independent of the value of r1• The contour C2 

starts at infinity and goes to r = r1 along the 
straight line 8 = 371"/2; then it follows an arc of 
the circle r = r1 from 8 = 371"/2 to 8 = 511"/6; finally 
it goes out to infinity along the straight line 8 = 571"/6. 
The contour C3 starts at infinity and goes to r = r1 
along the straight line 8 = 1371"/6; then it follows 
an arc of the circle r = rdrom 8 = 1371"/6 to 8 = 371"/2; 
finally it goes out to infinity again along the straight 
line 8 = 371"/2. The contour C4 starts at infinity and 
goes to r = r1 along the straight line 8 = 11"/6; 
then it follows the circle r = r1 from 8 = 11"/6 to 
8 = 1371"/6; finally it goes out to infinity again along 
the straight line 8 = 1371"/6. 

Denote the integral (46) taken along the path 
C, by w,(7J): 

w,(7J) = L, (,-2 exp (~ t3 + 7Jt) dt. (49) 

Then, by the definitions of the contours given above, 
the following relation holds between the four solu­
tions thus defined: 

W1 + W2 + Ws + W4 = O. (50) 

The three contours C 1, C 2, and C 3 together with 
the two values of m given by Eq. (45) yield six 
independent solutions of the sixth-order differential 
equation (38) (with Pr = 1 in the latter). Never­
theless, it is convenient to define here several more 
solutions which will be needed later. 

The contour C 6 starts at infinity and goes to 
r = r1 along the straight line 8 = 511"/6; then it 
describes a circle of radius r = r 1 from 8 = 571"/6 to 
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(} = 17'1r/6, crossing from the principal plane to the 
upper plane in the process; finally it goes out to 
infinity again along the straight line (} = 17'1r/6. 
The contour C6 starts at infinity and goes to T = Tl 

along the straight line (} = 571/6 - 271"; then it 
traverses the circle T = TI from (J = 571"/6 - 271" 
to (J = 571"/6, crossing from the lower plane into 
the principal plane in the process; finally it goes 
out to infinity along the straight line (J = 571"/6. 
The contour C7 starts at infinity and goes to r = rl 

along the straight line (J = 71"/6 - 271"; then it 
traverses the circle T = TI from (J = 71"/6 - 271" 
to (J = 71"/6; finally it goes out to infinity along the 
straight line (J = 'Ir/6. 

vm. POWER SERIES EXPANSIONS OF 
THE SOLUTIONS 

The contour integrals of Eq. (49) can be used 
to expand the functions w,(7J) defined by them in 
ascending powers of 71. The function wI (7J) is used 
as an example. The equations of the various parts 
of the contour Clare written 

t = toeih/6 (along the incoming line), 

t = T l e'8 (along the arc of the circle), 

t = t le
i

"16 (along the outgoing line). 

Then Eq. (49) becomes, more explicitly 

X exp (~ t~e'''/2 + 7Jtle' .. /2)eir/6 dtl• 

The next step is to expand the exponentials con­
taining 71 in powers of 71. After some rearrangement 
we get 

co k k J .. 16 (.) + iT~-1 L: 71 ~I e,(m-I+k)8 exp !.. r~ii8 d(J 
k-O k. h/6 3 

Now combine the first and third terms on the right-­
hand side of the above equation by replacing the 
variable of integration tl by the variable to: 

co k 

( ) ,,71 [;(m+k-1)6"16 ;(m+k-1) "16] 
WI 71 = L.. - e - e 

10-0 kl 

X e i (mH-1)8 exp .! r~e3i8 d(J. l "n (.) 
6,,/6 3 

Since wI(7J) is independent of the value chosen for 
T I , we may conveniently evaluate the above series 
in the limit as TI -? O. Only the case Ric ~ 0 will 
be considered. For this case Re m ~ 0, by Eq. (45). 
Then 

and 

for k ~ 1, all in the limit as TI -? O. 
The above expression for wI (7J) reduces to 

co k 

WI(7J) = L;- [eHmH-Oh/6 _ e,(mH-Ilr/6] 
k-I k. 

X LO 
f;H-2e-lo'/3 dto + [eHm- 06"16 _ eHm- ll "/6] 

The integral 

1
,,16 1 

eHm- l ) 8 d(J = . [e,(m-O "16 _ eH"-Oh/6] 
h/6 t(m - 1) 

is needed. Also, integration by parts gives 

= (m ~ 1) [T~-le-r"/3 + f' t;;,+le- 1
o'/ 3 dto J­

In the limit TI -? 0, this becomes 

1 [ .. -I + 10 

t;;,+le- to ' /3 dto]. 
-? (m - 1) TI co 

Substitution of these integrals in the last expression 
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[
ei(m- ll S .. /6 _ ei(m-ll .. /6] fO 

+ tm+le-lo'/3 dt 
(m - 1) "' 0 o· 

This is required expansion of w(1]) in ascending 
powers of 1]. It is manifestly independent of rl' 

The method used above gives the following power 
series expansions of the other solutions that have 
been defined: 

"' k 
W2(1]) = L'; [e(3d/2) (m+k-ll _ e(Sri/6)(m+k-1l] 

k-I k. 

X fO tm+k-2e-lo'/3 dt + 1 [e(S"'/6) (m-I) 

"' 0 0 (m - 1) 

"' k 
wa(1]) = L'; [e( .. i/2)(3m+3k-1l _ e( .. i/6)(13m+k-7)] 

1:-1 k. 

X 1..0 

t;;,+k-2e- lo'/3 dto + (m ~ 1) [e( .. ,/6)(13m-7) 

"' k 
w,(1]) = L'; e(i .. /6) (m+k-ll 

1:-1 k. 

X (1 - ehmi
) 1..0 

t;;,+k-2e-lo'/3 dto 

- 1 e(i .. /6)(m-1l(1 _ e hmi) 1"' t;+1e-Io'/3 dt 
(m - 1) 0 0, 

"' k 
W

6
(1]) = L'; e(ih/6) (m+k-ll 

k-I k. 

X (1 - ehm') 1..0 

t;;,+k-2e-lo'/3 dto 

_ 1 e(s"'/6)(m-1l(1 _ e2 .. mi) 1"' tm+1 -10'/3 dt 
(m - 1) 0 0 e 0, 

X (1 - e-hm,) 1..0 

t;;,+k-2e-lo'/3 dto 

+ 1 e(Sri/6)(m-1)(1 _ e-2 .. mi) 1"' tm + 1 -10'/3 dt 
(m - 1) 0 0 e 0, 

X (1 - e2 .. im) f t;;,+k-2e-lo'/3 dto 

- (m ~ 1) e( .. i/6) (S-l1m) (1 - e 2rmi ) 1..0 

t;+le -lo'/3 dto. 

The following relations between the various solu­
tions are obtained from these power series expansions: 

W4 = e2 
.. 

m ,w7 , 

W6 = e2 .. miw6, 

IX. SADDLE POINTS 

(51) 

(52) 

(53) 

Asymptotic formulas for the functions w,(1]) are 
needed. For this purpose, write Eq. (49) in the form 

w,(1]) = 1 eP(C) dt, 
a, 

(54) 

where 

F(t) = (i/3)t3 + 1]t + (m - 2) In t. (55) 

The saddle points, denoted by tl here, are defined 
by the equation 

where primes indicate differentiation with respect 
to t. They satisfy the cubic equation 

it! + 1]tl + (m - 2) = O. 

Thus, there are three saddle points for a given 
value of 1] and m. 

When 11] I ~ co, a pair of saddle points are given 
approximately by 

(56) 

while the remaining saddle point is given by the 
formula 

(57) 

Thus, Itll ~ co for two of the saddle points, and 
Itll ~ 0 for the remaining, as 11]1 ~ co. 

It will be observed that near the saddle point 
tm

-
2 varies slowly compared with 

exp (~ ta + 1]t) 

in the former case. For this pair of saddle points 
the problem is simplified by writing Eq. (49) in 
the form 

(58) 
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with 

f(t) = iitS + 7]t. (59) 

The saddle points of f(t) are given exactly by 
Eq. (56). 

Decompose fCt) into real and imaginary parts: 

f(t) = u + iv. 

Remembering that t = re,8, this gives 

u = 7]f cos 8 - il sin 38, (60) 

v = 71r sin 8 + ir3 cos 38. (61) 

The curve of steepest descent is the curve v = 
constant that passes through the saddle point. The 
curves u = constant are the orthogonal trajectories 
of the family of curves v = constant. 

When 1] > 0, the choice of phase arg 1] = 0 will 
be made, while when 7] < 0, the choice of phase is 
arg 1] = 1f', so that 

7] = 17]1 e'''. 

With this choice of phases the saddle points (56) 
become 

(62a, b) 

for positive 1], and 

tl = 17Ili e,3tr/\ tl = J7]l i 6,70:/4 (63a, b) 

for negative 7]. Therefore, all the saddle points are 
in the principal plane. 

SUbstituting these values of tl in Eq. (59) gives 
the values of v (say Vl) for the curves passing through 
the saddle points 

Vl = 10 1]i, Vl = -i0 7]1 (64a, b) 

for positive 1], and 

Vl = -i017111, Vl = 10 11]11 (65a, b) 

for negative 1]. 

The saddle points given by Eq. (57) require 
the use of the function F(t). Separate this function 
into real and imaginary parts: 

F(t) = u + iv. 

When Ric < I, so that m is real, we get 

u = 7]r cos 8 - irs sin 38 + (m - 2) In r, 

v = '1rSin 8 + irs cos 38 + (m - 2)8. 

(66) 

(67) 

When Ric> i, so that m is complex, the quantity 

n = (Ric - l)t 

is used. According to the second equation of (45), 

m is given by 

m =! ± in. 

Now u and v are given by the formulas 

u = '1r cos fJ - irs sin 38 - ! In r =F nfJ, 

v = 71rSin 8 + i r3 cos 38 ± n Inr - !8. 

(68) 

(69) 

Note that (2 - m) is positive when Ric is in the 
range 0 ::; Ric ::; i. From Eq. (57) we see that 
arg i l = 0 when 1] > O. Therefore, i l is in the lower 
plane. A second approximation to i l may be obtained 
by SUbstituting formula (57) for tl into the cubic 
term in the cubic equation for tl: 

i l = [(2 - m)!71][1 - i(2 - mY/7I3]. (70) 

This value of tl gives the following value of Vl when 
substituted into Eq. (55): 

(71) 

when m is real. 
When 1] < 0 Eq. (57) gives arg tl = -1f' when 

the usual choice of the phase of 1] is made. There­
fore, tl is in the lower plane in this case also. A more 
accurate value of i l is 

i - (2 - m) -r'[1 + (2 - m)' .J. (72) 
1 - 1711 e 17113 t 

The value of Vl corresponding to this is 

Vl = (2 - m)1f' - (2 - m)3/3 11]1\ (73) 

when m is real. When Ric > t so that m is complex, 
the saddle point for the case 1] < 0 remains in the 
lower plane. However, as Ric increases, the saddle 
point for the case 1] > 0 moves from the lower 
plane to the principal plane. 

X. DISCUSSION OF THE CURVES OF 
STEEPEST DESCENT 

When r is large the two dominant terms in Eqs. 
(61), (67), and (69) are the same and are 

7]f sin 8 + ira cos 38 = O. 

Solving this for r gives 

r2 = -371 sin 81cos 38 (74) 

when r ~ O. Thus there are asymptotes when 
cos 38 = 0 so that r -? g, for these values. This 
happens at 8 = 1f'/6, 1f'/2, 51f'/6, 71f'/6, 31f'/2, ll1f'/6, 
131f'/6 in the principal plane and at 

1f' 1f' 51f' 71f' 31f' 111f' 
8 = -"6 ' -2 ' -6 ' -6 ' -"2 ' -6 ' 

in the lower plane. Equation (74) shows that the 
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asymptotes 

8=~ 
6' 

77r 
6 ' 

7r 57r 77r 117r 137r 
-"6 ' -"6 ' 6' 6' 6 

are approached through decreasing values of 0 and 
the asymptotes 

8 = 7r/2, 37r/2, -7r/2, -37r/2 

through increasing values of 0 when 1/ > O. When 
1/ < 0 the situation is reversed. 

Equations (60), (66), and (68) show that u takes 
the following approximate form for large r: 

u = -irs sin 30. 

Thus u -+ - ex> along the branches asymptotic to 

8 = ~ 57r 37r 137r _! _ 77r _ 1l7r 
6'6'2'6' 2' 6' 6' 

while u -+ + ex> along the branches asymptotic to 

o=! 77r Ih _! _57r _37r. 
2'6'6' 6' 6' 2 

Note that the curves given by Eq. (74) have no 
intercepts with the asymptotes. If this equation were 
exactly true the branches asymptotic to 0 = 7r/6 
and 0 = 7r /2 would connect as would the branches 
asymptotic to 0 = 77r/6 and 0 = 37r/2, when 1/ > O. 
Similarly the branches asymptotic to 0 = 7r /2 and 
8 = 57r/6 would connect as would the branches 
asymptotic to 0 = 37r/2 and 0 = Ih/6, when 
1/ < O. Corresponding results would hold for the 
lower plane. The minimum value of r for these 
branches would be of the order of magnitude of 
11/11. Equations (67) and (69) have no other terms 
that are of magnitude comparable with those already 
retained, when this minimum value of r is approached. 
Consequently the branches mentioned will be con­
nected when the full equations (67) and (69) are 
taken into account. On the other hand, Eq. (61) 
does contain an additional term that must be taken 
into account, as shown by Eqs. (64) and (65). It can 
no longer be assumed that the branches mentioned 
will join up, when the full equation (61) is taken 
into account. 

Next, the behavior of the curves near the saddle 
point must be obtained. To this end, expand the 
function f(t) in a Taylor series around the saddle 
point tl: 

f(t) = f(t l ) + f'(tl)(t - tl ) 

+ If''(tl)(t - tl)2 + (75) 

This equals 

f(t) = lit~ + 1/tl + itl(t - tl)2 + 
The variables p and cJ> given by 

t - tl = pe,,p 

are used. Substitution of tl from Eqs. (62) and (63) 
results in the following expressions for f(t): 

f(t) = h ie, .. /4 + 7Il / ei<2if>+3r/4), (76a) 

f(t) = h iei5r/ 4 + 7Il pV(2if>+7 .. /4) (76b) 

when 1/ is positive, and 

f(t) = i 17Ill e,7 .. /4 + 17Il i p2e,(2if>H .. /4) , (77a) 

f(t) = i 11/1! e,U .. /4 + 17Il i /ei(24)+9 .. /4) (77b) 

when 1/ is negative. 
Separate Eq. (76a) into real and imaginary parts: 

u = iV2 1/t + 711/ cos (2<p + 37r/4), 

v = 1V2 7It + 1/i / sin (2<p + 37r/4). 

Using Eq. (64a) we see that near the saddle point 
the curve of steepest descent satisfies the condition 

sin (2cJ> + 37r/4) = O. 

Thus the curve is tangent to the lines cJ> = 7r /8, 
57r/8, 97r/8, 137r/8 at tl • From the above equation 
for u we see that this quantity decreases as we go 
away from the saddle point along the lines cJ> = 7r/8, 
9~ /~; and likewise it increases when cJ> = 57r /8, 137r /8. 
SlIDilarly, Eq. (76b) determines curves tangent to 
the lines cJ> = 7r/8, 97r/8 along which u increases, 
and curv~s tangent to the lines cJ> = 5r /8, 13r /8 
along WhICh u decreases. Equation (77a) determines 
cur:ves ta~gent to the lines cJ> = 3r /8, llr /8 along 
which u lllcreases; and curves tangent to the lines 
cJ>. = 7r /8, 15r /8 along which u decreases. Equa­
tIOn (77b) determines curves tangent to the lines 
cJ> = 3r/8, Ih/8 along which u decreases as we 
recede from t l ; and curves tangent to the lines 
cJ> = 7r /8, 157r /8 along which u increases as we 
recede from t l • 

The behavior of the curves given by Eqs. (67) and 
(69) may be obtained by expanding F(t) in a Taylor 
series around tl: 

F(t) = F(tl) + F'(t1)(t - tl) 

+ !F"(t1)(t - tl)2 + '" 
Using Eqs. (55) and (57) this becomes approximately 

F(t) = (2 - m) - (2 - m) In tl 

(78) 
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-8 

+16, 

I 
+12 -t 

I 

., -18 
'-- -16 

t, - 3 "31 
- - ASYMPTOTES 

-20 

FIG. 2. Curves of steepest descent passing 
through the saddle point. 

Putting 
(79) 

and using the variables p and cp, allow F(t) to be 
~eparal ted into real and imaginary parts, when m 
IS rea: 

u = (2 - m) - (2 - m) In Tt 

+ [112/2(2 - m)]/ cos 2cf>, 

+20 

.,. \8 +16~ 
t, = -3 -31 I 
- - ASYMPTOTES 

+12~ 

+8-1 
I 

~ __ ~ __ -L __ ~I __ I 
+8 

,-12 

L -16 
Y 

FIG. 3. Curves of steepest descent passing 
through the saddle point. 

v =-(2 - m)Ot + [112/2(2 - m)]/ sin 2cf>. 

Thus the curves of steepest descent are tangent 
to the lines cp = 0, r/2, r, 311/2 at the saddle point. 
The equation for u shows that it increases going 
away from the saddle point along the lines cp = 0, r 

and decreases along the lines cp = r/2, 3r/2. 
When m is complex, write 

2 - m = i =F in = (t + n2)i 

X exp (=Fi tan-I 2n/3), (80) 

where n = (Ric - l)i. Inserting this expression 
for (2 - m) into Eq. (78) and separating F(t) into 
real and imaginary parts we get 

u = i - i In TI =F nOI 

1/ P -I 2n 2 2 ( ) 

+ 2tt + n 2)i cos 2cf> ± tan "3 ' 

+ 1/
2

/ • (,>..1. -I 2n) 
2(t + n 2)! sm ..." ± tan "3 ' 

where use has been made of Eq. (79). The curves 
of steepest descent at the saddle point are tangent 
to the lines given by 

sin (2cf> ± tan-I (2n/3» = 0. 

The solutions 

2cf> ± tan-I (2n/3) = 0, 2r 

,,- -18 
t,--3+31 

y r+ 16 

I- +12 

I 
I- +8 

1+ 4 

I~--~---L __ -L_X 
+8 

-'6 J 

FIG. 4. Curves of steepest descent passing 
through the saddle point. 
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when inserted into the above expression for u show 
that this quantity increases when going away from 
t l • Likewise the solutions 

2<P ± tan-I (2n/3) = '11", 3'11" 

are seen to give decreasing values for u. 
The final task is to connect up the branches of 

the curve near the asymptotes with the branches 
near the saddle point. For this purpose consideration 
of the intercepts of the curves v = VI with the asymp­
totes is helpful. For Eq. (61) we see that these 
intercepts are given by 

r = VI /71 sin 8. 

Hence there is at most one intercept with each 
asymptote. When VI and 71 have the same sign there 
is an intercept with each asymptote in the upper 
half-plane, and none with the asymptotes in the 
lower half-plane. When VI and 71 have opposite signs 
the situation is reversed. 

Note also that since Eq. (61) is cubic in r there 
are at most three values of r for every value of 8. 
Also u is monotonic along each branch of the curve 
starting from the saddle point. 

Figures 2 through 5 illustrate the curves of steepest 
descent corresponding to Eq. (61). The curve of 
Fig. 2 passing through the saddle point and asymp­
totic to the lines 8 = '11"/6, 5'11"/6 is called C~. The 
curve of Fig. 3 passing through the saddle point 
and asymptotic to the lines 8 = 5'11"/6,3'11"/2 is called 
C~. The curve of Fig. 4 passing through the saddle 
point and asymptotic to the lines 8 = '11"/6, 5'11"/6 

I y 

L+ 16 

I 
I- +12 

I 
1-+8 

-IZ -1 ,., - -18 
1,- 3 -31 

-16 -.J 
-- -- ASYMPTOTES 

FIG. 5. Curves of steepest descent passing 
through the saddle point. 

.. ..... PRINCIPAL PLANE 
_ LOWER PLANE 
- - ASYMPTOTES 

1- 3 

I 
.. ·· .... ··i-'i· ... ,...... .....,/ 

~ .. , I ".'/ 
' ............... , ~' ,/ ..... ......,/ 

./ 
,/ 

" 

'1 - 18 

FIG. 6. Curves of steepest descent. The radial coordinate is 
log 10 lOOOr plotted VB fJ. 

is called q'. Finally the curve of Fig. 5 passing 
through the saddle point and asymptotic to the 
lines 8 = 3'11"/2, 13'11/6 will be called C~. These 
curves pass through the saddle points given by 
Eqs. (62) and (63), respectively. 

The curves of Eqs. (67) and (69) have branches 
near the origin. Putting r = 0 in Eq. (67) gives 

8 = vI/(m - 2). 

From Eq. (71) we see that 8 ~ 0 when 71 is large 
and positive. From Eq. (73) we see that 8 ~ -'II" 

when 71 is large and negative. Hence these branches 
are in the lower plane. Equation (66) shows that 
u ~ - (X) as we approach the origin along these 
branches. Letting r ~ 0 in Eq. (69) shows that 
the curve spirals toward the origin. Equation (68) 

• ••••• NEXT LOWER PLANE 
- LOWER PLANE 
- - ASYMPTOTES 

t.- - ~ 
'1- - 18 

I 
tn- "2 " 

.~ 
I 

3-1 
I 

FIG. 7. Curves of steepest descent. The radial coordinate is 
loglo lOOOr plotted VB fJ. 
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I 41 
3--\ 

I 
'.""'" ....... ~.~ ........ . 

....... ..' I ......... ' ...... 

FIG. 8. Curves of steepest descent. The radial coordinate is 
IOglO lOOOr plotted vs 8. 

shows that u _ + CD as we approach the origin 
along the spiral. 

Next the various branches of the curve of Eq. (67) 
must be joined up. For this purpose the intercepts 
of the curve with the asymptotes are once again 
useful. When 1/ > 0 they are given by 

r = [(2 - m)/1/](O/sin 0), 

where use has been made of Eq. (71). There are 
intercepts with the lines 0 = 511"/6, 11"/2, 11"/6, -11"/6, 
-11"/2, -511"/6 and none with the lines 0 = 1111"/6, 
311"/2,711"/6, -711"/6, -311"/2, -1111"/6. 

When 1/ < 0, the use of Eq. (73) gives the following 
formula for the intercepts: 

r = -[(2 - m)/I1/IJ[(1I" + O)/sin 0]. 

There is an intercept with every asymptote in the 
lower plane. In the principal plane there are inter~ 
cepts with the asymptotes 0 = 711"/6, 311"/2, 1111"/6, 
and none with the asymptotes 0 = 511"/6, 11"/2, 11"/6. 

Figure 6 illustrates the curves of steepest descent 
for m = ! and 1/ = 18, given by Eq. (67). The curve 
of Fig. 6 passing through the saddle point and 
asymptotic to the lines 0 = -711"/6,511"/6 is called q. 

Figure 7 illustrates the curves of steepest descent 
for the case m = !, 1/ = -18. The curve of Fig. 7 
passing through the saddle point and asymptotic 
to the lines 0 = -1111"/6,11"/6 is called C~. It passes 
out of the lower plane into the plane given by 

11"/6 - 411" ~ 0 ~ 11"/6 - 211", 

which is called the next lower plane. 
When Ric > 1 so that m is complex, the discussion 

of the curves is more complicated. The quantity 
VI is no longer given by Eqs. (71) and (73). Figures 

8, 9, 10 and 11 illustrate the curves corresponding 
to Eq. (69). These figures show that nothing radical 
happens to the curves of steepest descent as Ric 
passes through the value 1. 

The curves of Figs. 8 and 9 passing through 
the saddle point and asymptotic to the lines 0 = 

-711"/6, 511"/6 are called q', and e~", respectively . 
The curves of Figs. 10 and 11 passing through the 
saddle point and asymptotic to the lines 0 = 
-1111"/6, 11"/6 are called ev and ev', respectively. 

XI. ASYMPTOTIC FORMULAS 

The contours e; in Eq. (49) can be deformed 
to the contours e~ without changing the value of 
the functions w;(1/): 

w;(1/) = i" t(m-2) exp (~ ta + 1/t) dt. (81) 

The same holds for the contours e~' and e~". 
Consider first the saddle points (62) and (63). Near 
the saddle point the factor t(m-2) varies slowly 
compared with the other factor of the integrand, 
and accordingly it will be taken as constant. The 
contour e~ will be replaced by a straight line through 
the saddle point tangent to e~ at that point. Using 
the Taylor expansion (75) for t(t) we get 

W;(71) ,....., t~m-2)ef(l,) 1 exp [!t"(t1)(t - tJ2] di. 
e,' 

Use of Eqs. (76) and (77) for t(t) gives the following 
asymptotic formulas: 

W1(71) ~ 11"' exp [~11" (m - !) ]71t (m-5/2) 

tl _ 0.186.+ 1 IS-.S 

~ - 18 
n --3 

,/ 
,/ 

~C:"" 
~(t'" •••••• 

'. '. ..... 

."', 

4-\ 
I 

X exp [i£'1]i], (82a) 

•••••• PRINCIPAL PLANE 
• - LOWER PLANE 

• •••• :- _ ASYMPTOTES 

'. 

FIG. 9. Curves of steepest descent. The radial coordinate is 
loglO lOOOr plotted va 9. 
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W 2 (1]) ~ 1/.1 exp [is; (m - !) J1]!("H12) 

X exp [-ii'T/IJ (82b) 

as 1] ~ + co, and 

W1(T/) ~ 71"' exp [i; (m + !) J 11]1!(m-6/2
) 

X exp [-iii IT/Ii], 

( ) 1 [.71" (7 17)J ICm-5/2) Wa 1] ~71" exp ~4 m-'2 1] 

(83a) 

X exp [W IT/It] (83b) 

aS1]~-OO. 

Next consider the saddle points given by Eqs. 
(70) and (72). When 11]1 is large the only appreciable 
contribution to the integral in Eq. (81) comes from 
the neighborhood of the saddle point. Since Itll is 
small there, the cubic term in F(t) is neglected, and 
the following formula used: 

F(t) = T/t + (m - 2) In t. 

Expanding F(t) in a Taylor series around the point 
tl and retaining no terms higher than the quadratic 
ones give the following approximation to Eq. (81): 

w.(1]) ~ eC2- m ) (2 - m)-C2-m) 1]C2-.. ) 

X fe., exp L(2 ~ m) (t - tl)2J dt, 

when i = 6, 7. Replacing the contour C: by a straight 
line through the saddle point, tangent to the contour 
there, we finally get 

W6(1]) ~ (271")'ie C2 - m)(2 - m)Cm-i>T/(l-m) (84) 

.' •••• NExt LOWER PLANE 
- LOWER PLANE 
- - ASYMPTOTES 

1-' 
I 
1-3 
I 

FIG. 10. Curves of steepest descent. The radial coordinate is 
loglO lOOOr plotted vs o. 

" _ 0.186 e _111'-.5 

'! - -18 
n - -3 

FIG. 11. Curves of steepest descent. The radial coordinate is 
loglO lOOOr plotted VB o. 

as 1] ~ + co, and 

w7 (T/) ~ -(2wlieC2 -
m )(2 - m)C"'-t> !T/!(l-")e-"'" (85) 

aST/~-OO. 

The same expressions are obtained if the contour 
C~' or C~" is used instead of C~, and if CV or C~" 
is used instead of C~. It follows that the above 
expressions are valid for m real or complex. 

The behavior of W2(T/) as T/ ~ - co can be obtained 
from Eqs. (85), (51), (83), and (50). The result is 

W2(T/) ~ -71"' exp [i 3: (m + !) J IT/ I,C"'-6/2) 

X exp [-iii IT/Ii]. (86) 

Similarly the behavior of wa(T/) as 1] ~ + 00 can 
be obtained from Eqs. (84), (52), (82), (53), and (50): 

wa(T/) ~ -71"' exp [i 3: (3m - !) J'I)tC"'-6/2
) 

X exp [ii''I)i]. (87) 

All of the solutions defined thus far behave as 
an increasing exponential on at least one side of the 
Stokes point. A solution, wS(1]), may be defined, 
however, which does not have this property. It is 
given by 

Ws = w, + (1 - e-.,. ... ')Wa. (88) 

An alternative expression for Ws may be obtained 
by the use of Eqs. (50), (52), and (53): 

Ws = (e-
21rm

' - l)w2 + W6' (89) 

From Eqs. (82b) , (84), and (89) we obtain the 
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asymptotic behavior 

Ws ~ (271")iie(2-m)(2 - m)(m-i)110-m), (90) 

as 11 ~ + a>. From Eqs. (83b), (85), (51), and 
(88), the behavior 

Ws ~ -(271")iie(2-m)(2 - m)(m-!) 111lo-m)emri (91) 

follows as 11 ~ - a> • 

Although the choice of phase 11 = 1111 eir was 
made when 11 is negative, the asymptotic formulas 
obtained in this section are independent of the 
choice of phase of 11. Note however that formulas 
(86), (83b), and (91) may be formally obtained 
from (82b), (87), and (90) by substituting 11 = 1111 e- ir 

in the latter. This is the same rule obtained in the 

case when gravity, density stratification, and heat 
conduction are neglected.4 

m. DISCUSSION 

The main results obtained here are perhaps the 
connection formulas for the asymptotic solutions 
across the turning (Stokes) point deduced in the 
last section. However, this was explicitly obtained 
only for the case of a Prandtl number of one, the 
more general case requiring a detailed examination 
of Whittaker's confluent hypergeometric functions. 
A logical sequel to obtaining the connection formulas 
would be the detailed solution of an eigenvalue 
problem using the asymptotic formulas. This has not 
been attempted as yet. 
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This paper contains a study of properties of solutions to the equation of generalized axially sym­
metric potentials. These potentials play an important role in many aspects of mathematical physics, 
in particular to an understanding of compressible flow in the transonic region. The ideas that have 
been basic in this investigation are contained in the integral operator method of Bergman. This 
method allows one to transplant certain properties of analytic functions to the solutions of linear 
partial differential equations. Results are obtained concerning singularities, residues, bounds, and 
growth of entire solutions, which are analogous to those found in classical function theory. 

I. INTRODUCTORY REMARKS 

GENERALIZED Axially Symmetric Potential 
Theory (GASPT) is the name that Weinsteinl

-
4 

has given to the study of solutions of the partial 
differential equation 

a2u a2u K au 
LK[U] = -a 2 + -a 2 + - -a = 0, K > O. (1.1) x y y y 

One is initially led to consider a differential equation 
of this type, when one considers those solutions of 
the n-dimensional Laplace equation a2ujax~+' .. + 
a2uj ax! = 0, which depend solely on the variables 
x = XII Y = (x~ + ... + x!)i. In this case K = n - 2. 

Recently, this author has written several papers 
on GASPT6

-
9 using function-theoretic methods 

similar to those developed by S. Bergman in the 
study of harmonic functions in three variables. lo

-
la 

In this paper these results shall be reformulated 
and presented as a unified approach to the study 
of the GASPT equation. It will be clear from the 
development, that these methods are immediately 
extendable to certain other singular partial dif-

.. Supported in part by Air Force Office of Scientific Re-
search under Grant 400-63. 
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ferential equations, such as the Euler-Poisson­
Darboux equation, 

a2 2 

~+~au= au+~au 
dx x ax ay2 y ay , 

the doubly symmetric equation 

a2~ + a2~ + ~ au + ~ au = 0 
ax ay xax yay' 

and the symmetric Helmholtz equation14 

a2 a2 a 
~+~+~~+K2 =0 
a 2 a2 aU. x y y y 

(1.2) 

(1.3) 

(1.4) 

It should also be mentioned that the methods 
used here employ integral operators which are not 
of the same type that Bergmanl6 uses for partial 
differential equations in two variables with entire 
coefficients. That is, there is no obvious connection 
between Bergman's Integral Operator of the first 
kind, and our operators; however, there is a close 
connection with the Whittaker-Bergman Operator, 
which transforms functions of two complex variables 
into solutions of the Laplace equation in three 
variables 

H(X) = Ba[f], 1 1 dt Ba[f] = 27ri .c f(t, t) T' 
t = [-(Xl - iX2Ht + Xa + (Xl + iX2)(lj2t)] , (1.5) 

IIX - XOII < E, X == (Xl, X2, xa), XO == (x~, X~, x~), 

where £ is a closed differentiable arc in the r plane, 
and E > 0 is sufficiently small. The connection, 
between the operator Ba[f], and the operators we 
may introduce for Eqs. (1.1)-(1.4) is that there 

14 Extens~ons. of th~ methods presented in this paper are 
presently bemg InvestIgated by the author and his associates 
for the cases of Eqs. (1.2), (1.3), and (1.4). 

15 S. Bergman, Arch. Ratl. Mech. Anal. 8, 207 (1961). 

983 
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exists a special or generating variable, such that u(z) = w(r, cos 8) 
powers of this variable are transformed into solutions 
of the partial differential equation by the integral 
operator. For instance, in the case of Ba[f] we see 
that the powers of t correspond to the following 
solutions16- 18 : 

r"P,,(cos 8) = B3[t"] == 21. J rId! ' 
11'~ In-1 ~ 

(1.6) 

cos 8 = x/r. 

For the GASPT equation the set r"C!K (cos 8), 
where the C!Km are Gegenbauer or ultraspherical 
harmonics/6.18.19 forms a complete system of solu­
tions regular about the origin. This fact, along with 
the integral representation for the Gegenbauer 
polynomials, 

"CP( 8) _ 2
1

-
2P r(2~ + n) 

r .. cos - n! r~)2 

X f' [x + iy cos ~]"(sin ~?P-l d~, (1.7) 

suggests the introduction of the following integral 
operator, where we have as the generating variable 
u = x + iy cos ~: 

u(z) == u(x, y) = <iK[j], 

<iK[j] == Oi.K L f(u)[r - r-1t-1 i ' 
4 + l' [ + -1] 

OI.K = (4~Yr(!K)2' u = X .,tty r r , (1.8) 

£ == {r I r = ei<P, 0 ::; ~ ::; 11'}, 

Iz -ll < E, z == x + iy, 

where ZO is an initial point of definition/o and E > 0 
is sufficiently small. We recognize immediately from 
(1.7) and (1.8), that the powers of u, {u"}, are 
mapped onto the complete system of functions 
[n!/r(K + n)]r"C!K (cos 8); consequently, if feu) 
is an analytic function, regular about the origin, 
feu) = L::-o a"u", then it is mapped by <iK[f] onto 
the solution,21 

11 Bateman Manuscript Project, Higher Tranacendental 
Functions, edited by A. Erderlyi (McGraw-Hill Book Com­
pany, Inc., New York, (1953), Vol. II. 

n R. Gilbert, Pac. J. Math. 10, 1243 (1960). 
18 E. W. Hobson, The Theory of Spherical and Ellipsoidal 

Harmonics, (Cambridge University Press, London, 1931). 
18 See Ref. 16, Vol. I. 
10 We assume the existence of a point Zo, such that 

in a suitably small neighborhood of this point, N(z) Ell 

(zl Iz - zol < EI, the integral representation is defined. 
n We refer to u(z) = u(x, y) as the (lK associate of I(a-). 

co I 
_ ~ n. "CiK( 8) 
- ~ r(K + n) a,.r .. cos . (1.9) 

We should like to stress here that this representation 
for u(z) is valid only in the small of the origin, 
and it is part of the theory of the integral operator 
method to extend the representation in the large. 

It should be mentioned that Bateman,22 Mackie,23 
Erdelyi,24 and Henrici,26 have considered integral 
representations of the form (1.8). In general, how­
ever, their approach to the study of integral op­
erators has been different from ours. We shall, 
nevertheless, attempt to point out any similarities 
which may exist. 

The integral representations of Vekua, 26.27 on the 
other hand, have no obvious connections 'with ours. 
Vekua obtains a representation for elliptic equations 
by formally transforming them into hyperbolic form 
and using the Riemann function representation. 
This method has the advantage of permitting OIl.e 
to solve boundary value problems; however, the 
representation formulas are somewhat more com­
plicated than those given by the expression (1.8). 
Consequently, it would be advantageous if a connec­
tion could be found between the two methods, 28 
as has been done by Diaz and Ludford29

•
30 for 

Bergman's operator of the first kind and Riemann 
function representations for regular linear hyperbolic 
equations. (For a discussion of Bergman's operator 
method as applied to compressible fluid flow see 
Krzywoblocki. 31) 

As a concluding remark, we mention that the 
theory of integral operators, as has been developed 
by Bergman and is presented here, formalizes a 
procedure by which analytic functions of a complex 
variable are transformed into solutions of partial 

22 H. Bateman, Partial Differential Equati01l8 of M athe-
matical Physics (Dover Publications, Inc., New York, 1944). 

IS A. G. Mackie, J. Rat. Mech. Anal. 4,733 (1955). 
14 A. Erdelyi, Commun. Pure Appl. Math. 9, (1956). 
II P. Henrici, Complete Systems 01 Solutiona for a Class 01 

Singular Elliptic Partial Differential Equations, Boundary 
Value Problems in Differential Equationa, edited by R. E. 
Langer (University of Wisconsin Press, Madison, Wisconsin 
1960). 

IS I. N. Vekua, Novye M etody resenija Ellipticeskikh 
Uravnenij, (OGIZ, Mockowand Leningrad,1948). 

27 P. Henrici, Z. Angew. Math. Physik 8, 169 (1957). 
28 This problem is currently being investigated by the 

author. 
U J. B. Diaz and G. S. S. Ludford, Quart. Appl. Math. 

14, 428 (1957). 
80 J. B. Diaz and G. S. S. Ludford, Quart. Appl. Math. 

12,422 (1955). 
11 M. Z. V. Kryzwoblocki, Bergman's Linear Integral 

Operator Method in the Theory of Compres8ible Fluid Flow 
(Springer-Verlag, Vienna, 1960). 
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differential equations. The importance of this theory 
Is three-fold, (i) to transplant theorems concerning 
analytic functions into theorems about solutions of 
partial differential equations, (li) to obtain rep­
resentation theorems for solutions, and (iii) to con­
sider the analytic continuation of solutions. 

II. INVERSE OPERATORS OF THE FIRST 
AND SECOND KIND 

As we have just mentioned at the close of the 
previous section, a major use of the integral operator 
method is the transplanting of theorems concerning 
analytic functions into theorems about solutions of 
partial differential equations. These theorems are 
usually stated in terms of the <tK associates, and not 
expressed solely in terms of the solutions. In order 
to overcome this is it necessary to obtain an inverse 
operator to <tKff], which maps solutions of the GASPT 
equation back onto their <tK associates, This may be 
done in several ways. 

Inverse Operators of the First Kind 

In order to obtain the inverse operator <t;?[u], 
we continue the arguments x, y to complex values, 
and introduce the complex variables r = +(X2+y2)t, 
~ = x/r. (When x, yare real, ~ = cos fl.) Next, we 
define the kernel 

r~, r(1 - ~2)i, respectively. To justify this procedure 
we note that K(u/r, ~) may be summed formally, 
whenever lu/rl ::; p < 1; 

K(£: t) = 2-K p(K)2 (1 _ ,.2)t(K-U 
r ,~ r[i(K + 1)]2 I; 

X {t1
-
K E... [tK i: t2"C!K(~)J} at .. -0 I-(vlr). 

::; K2-K P(KY' (1 - ~~i(K-l)(1 - u'/rt) . 
r[l(K + 1)]2 [1 _ 2~(u/r) + u'/r2]iK +1 

(2.5) 
This follows from the classical identity 16 

.. 
E t"C!KW ::; (1 - 2~t + t2riK, for .• oItl < 1. (2.6) 
.. -0 

The constant coefficient in (2.5) may be reduced by 
means of the Legendre duplication formula 

r(2K) = 2
2K

-
1 

r(K + 1) 
r(K) --;r 2 , 

such that one obtains 

(u) (lK(1 _ ~2)i(K-l) 

K r ,~ = [1 _ 2~(u/r) + u2/r2]iK+l , 

(2.7) 

(
£: ) = [ P(K) J2 (1 - ~2)i(K-I) 

K r ,~ pri(K + 1)] 2K 

X i: (2m + K)(£:)'" ctK(~). 
maO r 

Lemma 2.1. Let W(r, cos 0) = u(x, y) be a GASPT 
function element defined about the origin by the integral 
operator <tKff], where feu) = E:-o a .. u". Then there 

(2.1) exists an inverse integral operator 

Then, from the orthogonality relation for the 
Gegenbauer polynomials16 

i:1 

(1 - f)iKC!~(~)c!.i(~) d~ 

a';I[U] = 1+1 

W(r, ~)K(£: , ~) d~, 
e-' r 

K(u/r, ~) is the kernel defined in (2.6) and e i8 a 
smooth curve joining -1 to + 1, which map8 u(x, y) 
back onto its aK associate f(u), 

::; 2
K
r(K + 11,) [P[i(K + 1)]J20 (211, + K)nl P(K) "' .. , (2.2) It is possible to find another inverse operator for 

it may be seen, that 
<tK by considering u(x, y) on the space r2 = zz* = O. 
We assume as before, that 

'" 
u" = i:1 {rem ~ K) rmctK(~) }K(~ , ~) d~. (2.3) feu) = E anu", and u = aK(f] 

.. -0 

Consequently, if feu) = E:-o a"u", and 
.. I 

_" a,.n. "CIK( ) 
- ~ r(K + 11,) r " ~, 

.. I 
W(r,~) = dK(f] = ~ r(na~. K) r"C!K(~), Since, 

C!K(~) 
then one has 

feu) = f a"u" = 1+1 

W(r, ~)K(£: , ~) ~, 
.. -0 -1 r 

(2.4) 

= t (-I)"'P(iK + m)r(n + K + m)(l - t~) .. 
... -0 m! P(tK)P(2m + K)(n - m)! t 

where W(r, ~) = u(x, y) with x, y replaced by (2.8) 
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as r -+ 0, we have 

1· "C1K(I:) = r(!K + n) (1)" on zz* = 0', (2.9) 
1m r " .. , r(1K) 2X 

r-O n. 2 

we may rewrite this as 

[ r(!K)2n! (2r)"C!K(~)J 
r(K + n) ... -0 

= [B(!K + n, !K)x"] ... -o, (2.10) 

for K > 0, where B(p, q) is the beta function. 
Consequently, one has on E{zz* = O}, 

'" L B(!K + n, !K)anx" 

= 11 [t an(xtt]tlK-I(l - t)lK-I dt. 
o n-O 

(2.11) 

The inversion of the order of summation and integra­
tion is valid for all lxi, 3 x ::; Po < the radius of 
convergence of f(u); this result follows by considering 
Hadamard's theorem concerning the multiplication 
of singularities with respect to the functions 

~ r(K + n) " 
£..J , x , 
n-O n. 

and 

~ r(K + n) n 
£..Jan , X. 
n-O n. 

On the set E{zz* = O}, we may consider (2.10) 
as an integral equation for f(xt), that is, 

u(2x, 2y) = r(!K)-2 { f(xt)t(l - t)lK-I dt, (2.12) 

where u(2x, 2y) =w(2r, ~). If we write F(x) =u(2x, 2y) 
on E{zz* = O}, then (2.12) may be written as 

F(x) = r(!K)-2 { f(xt)t(l - t)lK-I dt, 

and by setting r = xt, G(x) = XK-IF(x), geT) 
TtK-If(T), (2.12) may be rewritten as a convolution 
integral, 

G(x) = r(!K)-2 f g(T)(X - T)lK-I dr. (2.13) 

Equation (2.13) may be solved by means of Laplace 
transforms when 0 < K < 2 in the form 

fer) = CKrHK .!! l' (r - xr1KxK-IF(x) dx, 
dr 0 

(2.14) 

which may be expressed as 

feu) = CKUHK .!! {u1K 11 (1 - 7]r1K7]K-I 
du 0 

X [u(27]U, 2~u)] d7]} , 7]2 + ~2 = O. (2.15) 

Lemma 2.2. Let u(x, y) be a GASPT function 
element defined about the origin by the integral operator 
(iK[fl, (0 < K < 2), where feu) is analytic-regular 
about the origin. Then there exists an inverse operator 
for (iK(f] of the form 

",-I _ C HK.!! { tK 11 (1 )-lK K-I UK - KU U - 7] 7] 
du 0 

X [u(27]u, 2~u)] d7]}, 7]2 + ~2 = O. 

which maps u(x, y) back on to its (ix-associate feu). 

The reason for introducing inverse operators is 
that by employing an inverse operator it is some­
times possible to obtain theorems concerning GASPT 
functions, which are independent of their aK asso­
ciates. To see how this may be done, let 5'{f(u); PI 
be a class of analytic functions with property P; 
furthermore, let 9 {u(x, y); p* I be the class of 
GASPT-function elements, which is the image of 
5' under the transformation u(x, y) = aK[fl, f E 5'. 
Let (i~I[U] be an inverse operator for aK[f), that is 
a~I[u] is an integral operator, which transforms u 
into its aK associate. Now, suppose x{f; P**I is 
the image of 9 under the inverse mapping f = a~l[u]; 
if 5' n X ;e 0, we may then extract a result con­
cerning GASPT -function elements, which is in­
dependent of the aK associates. This principle is 
illustrated in the later sections. 

m. THEOREMS CONCERNING SINGULARITmS 
OF GASPT-FUNCTION ELEMENTS 

Let us assume that feu) is analytic about the 
origin; then 

u(x, y) 

= aK L f( x + i; [s- + S--I] )(S- - S--I)K-I d[ , (3.1) 

where .,e = E {S- I S- = e i a; 0 ::; a ::; 11' I defines a 
GASPT -function element in some neighborhood of 
the origin, m:(0). The representation (3.1) is actually 
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valid for all points z = x + iy, which may be reached 
by continuation along a contour 'Y, providing that 
no point of 'Y corresponds to a singularity of the 
integrand on the path of integration, .,c. We refer 
to this set of points ~ as the initial domain of definition 
for u(x, y) = aK[f]. It is possible, however, sometimes 
to extend this domain of definition by continuously 
deforming the path of integration .,c into .,c' in such 
a manner, that it does not cross over a singularity 
of the integrand. For instance, as we continue 
u(x, y) along 'Y in the z plane, the singularities 
of f(x + !(iy)LI + t- 1

]) move in the t plane; 
however, as long as these singularities do not cross 
over.,c' we may continue u(x, y) further. 

Let us consider the special case, where the only 
finite singUlarity of feu) is at u = a; here we may 
represent the singularity manifold of u(x. y) in 
complex two-space C2 as 

Sex, y; t) == (x - a)t + Hiy)(t2 + 1) = O. (3.2) 

Suppose we have been able to continue u(x, y) up to 
the point Zo on 'Y but at this point there is a singularity 
(one of the two ;oots t= - «x-a) ±[(x_a)2+y2]l /iy) 
about to cross over .,c'. Let us call the singularity 
t = to; then in a suitably small neighborhood of to, 
say It - tol < E, S(xo, Yo; t) vanishes only at 
t = to. If to is a simple zero, we may describe 
the singularity locally by setting 

S(xo, Yo; t) ~ (t - to)(iJs/at)(xo, Yo; to). (3.3) 

In this case it is always possible to avoid the sing­
ularity at t = to, by deforming .,c' so that it follows 
a portion of the circle It - tol = tE about to. 
From this we have the following results: 

Lemma 3.1. Let feu) be an analytic function, whose 
only finite singUlarity is at u = a. Ther;, the GASPT­
function element, u(x, y) = aK[f]' is regular for all 
points which do not lie on the intersection, 

E{Z I Sex, y; t) = OJ 

n E{Z I (aSjat)(x, y; t) = OJ = O. (3.4) 

Theorem 3.2. If the only finite singularities of the 
a K associate for a GASPT-function element u(x, y) 
is at a, then the only possible singularities of u(x, y) 
lie at a, and a. 

We may obtain the last result by computing 

as/at == (x - a) + iyt = 0, 

and eliminating t from (3.2). 
It is possible for us, however, to show that z = a, 

a, are the actual singularities of u(x, y). This may 
be done by using the inverse operator, 

feu) = aii
1 
[u(x , y)] = !SK( 1 - ~:) 

J
+l W(r, ~)(I - ~2)iK d~ 

X ~-1 (1 _ 2~(1/r + (12/r2)!K+1 , 
(3.5) 

W(r, ~) = u(r~, r(I - ~2)!), and considering what 
are the possible singularities of feu) if u(x, y) is 
singular at z = a, a. 

Lemma 3.3. Let u(x, y) = aK[f] be a GASPT-func­
tion element defined in the small of the origin. Further­
more, let W(r, ~) = u(r~, r(l - ~2)!), and let Z = 
El[~ = If(r)] be the singularity manifold of W(r, ~) 
in C2 (complex two-space); then the function feu) = 
a;l[u(x, y)] is regular at u providing this point does not 
lie on the intersection 

E{cp(u; r) == r2 - 2rTrlf(r) + u2 = OJ 

nE{alfjar = OJ. (3.6) 

The proof of this result parallels that of Lemma 3.1. 
We notice that the singularities of the integrand 
of (3.4) are of two different kinds; for instance, 
the singularities of the kernel K(u/r, ~) (see Eq. 2.7) 
move in the ~ plane as we attempt to continue 
feu) in the u plane; whereas, the singularities of 
W(r, ~) remain fixed. By the same reasoning as 
Hadamard used in his celebrated theorem concerning 
the multiplication of singularities, 17 .32 we realize 
that, unless the singularities of W(r, ~) and K(u/r, ~) 
coincide in the ~ plane, it is always possible to 
deform the contour of integration e, in order to 
avoid having a singularity of the kernel cross over 
it as feu) is continued along a path in the (1 plane. 
This means, that the only possible singularities of 
feu) must lie on the set 

E{r2 
- 2(1r~ + (12 = OJ n E{~ = If(r)j 

== E{r2 - 2(1rlf(r) + u2 = O}. 

We may now use the arguments of Lemma 3.1, 
in order to complete the proof. 

Theorem 3.4. If W(r,~) = U(r~, r(I - ~2)t) = (tK[fl 
has for its only finite singularities the points on the set 

Z' = E{r2 - 2~r + (i = O), 

then feu) is singular only at (1 = a. 

This may be seen from the fact that the only 
possible singularities of feu) must lie on the inter­
section (3.5). However, if r2 - 2a~r + a2 

= 0, 
then ~ = If(r) == !(r/a + air). Now, eliminating 
r between 

32 J. Hadamard, Acta Math. 22, 55 (1898). 
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~(O'; r) = r' - 0'(r2/a + a) + 0" = 0, (3.7) 
and 

()'P/ar == 2r(1 - O'/a) = ° 
yields 0' = a or 0' = 0. We disregard 0' = 0, since 
u(x, y) [and then consequently f(O')] is regular at 
the origin. 

We notice that this result can be rephrased in 
terms of z, and z. For instance, since 

(z - a)(z - a)zz - a(z + z) + a 2 

= x2 + y' + 2ax + a 2 = r' - 2~ + at, 

if u(x, y) is singular at z = a, a, f(O') may have 
a singularity at 0' = a. However, one may rewrite 
the singularity manifold of u(x, y) as 

(z - a)(z - a) = 0, or as r2 - 2ar~ + a2 = 0, 

which implies f(O') may have a singularity at 0' = a. 
Consequently, we have the following results: 

Theorem 3.5. If u(x, y) = aK[f] has a singularity 
at z = a, a, then f(O') may be singular at 0' = a, a. 

Theorem 3.6. The necessary and sufficient conditions 
for u(x, y) = aK[f] to be singular at z = a is that 
f(O') be singular at 0' = a, or a.aa 

The validity of Theorem (3.6) is realized as 
follows: each "possible" singularity of u(x, y) is 
seen to correspond to an actual singularity of its aK 

associate under the inverse mapping f(O') = a~l[u]. 

We are now in a position to transplant certain 
results of analytic function theory to the case of 
GASPT. We list some theorems which were proven 
earlier by this author, and indicate their proofs 
below.8

•
7

•
9 

Theorem 3.7. Letcp(x, y), and 1/I(x, y) be two GASPT­
function elements with the series expansion 

~ ~ 

cp == L a,.r"C!K(cos 8), 1/1 == L b"r"C!K(cos 8). 
.-0 n-O 

Furthermore, let us suppose, that cp and 1/1 have sing­
ularities, respectively, at the point pairs {a, a}, and 
{,8, Pl. Then the GASPT-function element defined by 
the development 

~ 

F == L a"b"r"C!K(cos 8), 
,,-0 

has singularities at either the point pair {a,8, ap}, 
or at {ap, a,8}. 

Proof: Let f(O'), g(u), and h(u) be the aK associates 
of cp, 1/1, and F, respectively. From Hadamard's 

II Henrici has also given a similar result; however, he uses 
a different approach to this problem. P. Henrici, Proc. Am. 
Math. 800. 8, 29 (1957). 

mUltiplication of singularities theorem we realize 
that if f(O'), g(a) have singularities at 8, -y, respec­
tively, then h(u) may be singular only at 0' = 8-y. 
In this case, the corresponding singularities of cp, 1/1, 
and F are then at the point pairs {8, 8}, h, 1}, and 
{8-y, 51}, respectively. This completes the proof. 

Theorem 3.8. Let u(x, y) be a GASPT -function 
element with the following series development about 
the origin :34 

~ 

u = L a,.r"C!K(cos 0). 
,,-0 

Then, u converges uniformly and absolutely in any 
compact subset of the disk of convergence Izl < R, 
where 

,,-+~ 

Proof: We first recognize, that the ax associate 
for u(x, y) is the function 

f( ) = ~ r(K + n) " 
0' £... I a"O' , ,,-0 n. 

and that the radius of convergence for feu) may be 
computed by the Hadamard formula to be 

_ (-. Ir(K + n) 11/")-1 R-hm I a" 
n-uX) n. 

= (lim [r(K + n)]I/" lim la,,11I,,)-1 
A_CO nl ft_CO 

This may be seen by using the fact, that r(K + 
n)/r(n + 1) ~ nK- I for large n.36 

Next, since 10'1 = Ix + iy cos al ~ Izl, when 
t = eia

, we have that 

IU(X, y) - ~ a .. r"C!K(cos 8)1 

= 1 :t a .. r"C!K(cos 0)1 
n-N+l 

'" 
~ L la"r"C!K(cos 8)1 

ft-N+l 

< ~ la,,1 r(K + n) 1" I I" . X-I da _ £... K I 0' sm a 
n-N+I 2 - n! 0 

< 2:.... ~ r(N + 1 + K + II) 
- 2K

-
I ~ (N + 1 + JI)! 

" Erdelyil( has also given a similar theorem concerning 
the disk of convergence for a Gegenbauer series. 

II E. T. Copson, Theory of a Function of a Complex Variable 
(Oxford University Press, New York, 1935). 
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where Izl < r ~ R. Since feu) is analytic-regular 
in the disk lui < R, the terms [r(N + 1 + K + 
II)/(N + 1 + II)!] laN+l+,1 rN+l+, are bounded above, 
say, by M. Consequently, we have 

IU(X, y) - ~ a"r"C!K(cos 0)1 

< 7rM IzlN+l 1 
- 2K

-
1 r 1 - Izlrl' 

which tends to zero as N -+ 00, for Izl < r ~ R. 
It is clear from Theorem 3 that u(x, y) is regular 

in the disk Izl < r ~ R, and that the first singularity 
of u(x, y) must occur on the circle Izi = R. 

Theorem 3.9. Let u(x, y) be a GASPT-function 
element defined about z = 0, with the series development 

.. 
u(x, y) = :E a"r"C!K(cos 0). 

10-0 

Furthermore, let 

and 11' limx...... IDil') II. Then we have the following 
possibilities: 

(a) If there is a II such that 1./1._1 = 0, u(x, y) 
has 211 singularities (pole-like branch points) 
in the entire z plane. 

(b) If 11'/11'_1 -+ 0, u(x, y) has just afinite number 
of singularities in every finite region. 

(c) If 11'1ll'-1 -+ llR, u(x, y) has just a finite 
number of singUlarities in the disk Izl ~ p < R, 
but an infinite number of singularities in the 
neighborhood of Izl = R. 

Proof: This result is essentially a transplanting 
of Hadamard's theorem concerning the singUlarities 
of meromorphic functions. 36 In order to see that 
it is true we first note, that the aK associate of 
u(x, y) is 

f( ) = ~ r(n + K) .. u L.J , a"u . ,,-0 n. 

From our fundamental theorem concerning sing­
ularities of GASPT functions, we recall that the 
necessary and sufficient criteria for u(x, y) to be 
singular at z = a, a is for feu) to be singular at 
either u = a or a. With this in mind we apply 
the Hadamard criteria to feu) as given above and 

al P. Dienes, The Taylor Seriea, (Oxford University Press, 
New York, 1931). 

consider the determinants 

r(K + A + p.) r(K + A + 2p.) 
(A + p.)! ax+I'" .. , (A + 2p.)! aX+2~ 

and the limits LI' = limx ...... l~ip)Il/\ If feu) is mero­
morphic, then one of the situations (a), (b), or (c) 
holds, and in this case Lp exists. Next, we note as be­
fore that for large A, r(K +A+ p.) / r(A+P.+ l)~A K-l. 

Consequently, as A -+ 00, we have 

lim IAK-lI1/X -+ I, 
x ...... 

and 

LI' = lim I~il') 11IX = lim IAK
-
1111x lim IDiP

) Il/X 
)._co A_CD A_CO 

= lim I Dil') 11/X = 11" 
x ...... 

This concludes our proof. 

IV. GASPT-FUNCTION ELEMENTS WITH 
MEROM ORPHIC ASSOCIATES 

In this section we consider the case where the 
a K associate of u(x, y) is a meromorphic function 
in the finite u plane. Then we may express feu) in 
terms of its Mittag-Leffler expansion7.13.37 as 

feu) = ~ [P.C ! b) - P.(u) ] + e(u), (4.1) 

where the b. are the poles of feu), P.(I/(u - b,» 
the corresponding principal parts, the P.(u) suitably 
chosen polynomials to ensure convergence, and e(u) 
an entire function. Since (4.1) converges uniformly 
in every compact subset of the u plane which does 
not contain the b., one may evaluate the integral 
representation for u(x, y) = aK[f] by inverting the 
orders of summation and integration. One has in 
this instance 

1{ " [ ( 1 ) = aK :E P,--
.ll .-1 U - b, 

.. 
= ~ [<I>,(x, y) - ~.(x, y)] + E(x, y), (4.2) 

17 L. Ahlfors, Complex Analysis (McGraw-Hill Book Com­
pany, Inc., New York, 1953). 
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where E(x, y) is an entire GASPT function, and 
l{J(x, y) is a GASPT polynomial. 

If K is an odd integer, then the integrals 

<t>.(x, y) = aK L P,C,. ~ b}r - r-1)K-l d[, (4.3) 

may be evaluated easily using the calculus of residues 
if we replace .£ by the unit circle and divide (4.3) 
by 2. For instance, if 

P (_1_) = t M~. (4.4) 
• 0' - b. ~-1 (0' - b.Y , 

(4.5) 

Consequently, if K is an odd integer then u(x, y) 
has the representation 

. a> {[m. (-1)~(2)Ka~ 
u(x, y) = aK~1I" L L M~. --I - -:- ----;. 

.-1 ~-1 p,. ~y ax 

x «(x - b.)2 + y2)tK] - l{J.(x, y)} + E(x, y). (4.6) 

It may be shown, that this infinite-series representa­
tion converges in every compact set in the z plane 
which does not contain singularities of the <t>.(x, y).38 

It is possible to obtain bounds for GASPT -func­
tion elements with meromorphic <tK associates. This 
problem has already been considered by Bergman 16 
for harmonic functions in three variables, and been 
discussed for the case of GASPT by the author. 7 

Let us assume that the <tK associate of u(x, y) 
may be written as feu) == h,(u)/h2(u), where the 
hK(u) (K = 1, 2) are entire functions of order A. 
rThat is, if MK(r) is the maximum modulus of 
hK(u) (K = 1, 2) on lui = r we have A = AK limr_a> 
(log log MK(r)/log r).J It is possible for us to obtain 
a lower bound for the minimum modulus of an 
entire function from a theorem of Borel's.36 For 
instance, if mer) is the minimum modulus of h(u) 
and A the order, then mer) > e- rH

• on circles of 
arbitrarily large radius for those regions <R excluding 
the circles 10' - unl :::; lun/-n, where h > A. 

We may use these results to obtain bounds for 
GASPT -function elements in their domains of asso­
ciation as follows. Suppose, that the poles of feu) 

38 See Bergman'6 and Gilbert7 for a discussion of this 
proof. 

are located at the set of points {b.} ;-1, and that 
no b, = O. In this case u(x, y) is regular at z = 0, 
and its domain of association is the z plane less the 
segmentsE{z / x = Re b., y2 ~ 11m b.l; P = 1,2, ... }. 
After Bergman,16 we then consider the z plane minus 
strips of thickness 2 Ib.l-h covering the above seg­
ments; that is, we are interested in the domain 

ffi == E{Z I ~ [Re b. + Ib.rn 
:::; x 

:::; Re b'+l - Ib.+11-n, y2 < OO]} 
(4.7) 

It is clear that if z E ffi then 0' E CR; consequently, 
we may prove the result. 

Theorem 4.1. Let u(x, y) be a GASPT function 
with a meromorphic a880ciate feu). Furthermore, let 
f (0') be repre8entable a8 a quotient of entire function8 
of order A, h(u)/g(u), 8uch that h(u) i8 not of maximum 
type. Then, in the subdomain ffi of the domain of 
a880ciation for u(x, y), and for Izi = r 8ujficiently 
large one, has the inequality 

i a'rX +f' 

lu(x, y)1 :::; 2:-1 r[!(K
e 
+ 1)]r(!K)' (4.8) 

where a' = a + 1 + E, and E, e' > 0 are arbitrarily 
small. 

From the integral representation for u(x, y) we 
have for r sufficiently large 

1I"t erA +"[C a+.)r-"+I[ 

= 2K - 1 r[!(K + 1)] r(!K) 

where a < 00 since h(u) is not of maximum type, 
and E, e' > 0 are arbitrarily small. 

As Bergman16 has shown in the case of harmonic 
functions in three variables, one may obtain an 
interesting class of meromorphic GASPT functions 
by considering 
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f( ) = r'Cer + a) = _ 
er r(er + a) 'Y 

+ t(_l__ 1 ) 
.. -0 n + 1 n + er + a ' 

a ¢ 0, (4.9) 

where 'Y is Euler's constant and r(er) is the gamma 
function. From the relations 

r'(er) 1 1 1 ~ ( 3) -1 -- = og er - - - - £." P. - P. 
r(er) 2er 2 1'-3 

... 
X L (0" - vt", Re 0" > 0, (4.10) 

'-1 

and 

r/(mO") 1 ~ r'Cer + vim) + 1 -- = - £." og m 
r(mO") m .-0 reO" + vim) , 

m = 2, 3, 4 ... , (4.11) 

we may obtain the following transplanted relations 
concerning the functions 4>x(z; a) == ax[r'(O" - a) 
Ir(O" - a)]: 

4>x(z; a) = ,cK(Z; a) - !ffji)(z; a) 

- -2
1 t (p. - 2)p. -1 t ff;r)(z + v; a), 

~-3 ,-1 

and 

where 

,cK(Z; a) = ax L log (0" + a)(r - r-1
)X-l d! ' 

ff;r)(z + v; a) == ax L (0" + V + atP(r - r-1t-1 d{ ; 

ff;r)(z + v; a) = t [p. + n - 1]( -It(v + at"-P 
.. -0 p. _ 1 

nl "Cix() 
X r(K + n) r .. ~ 

for Izi < lal, and 

for Izl > la), where the PpW are associated Legendre 
functions. 

V. GASPT FUNCTIONS WITH ENTIRE 
ASSOCIATES 

We shall call a GASPT function entire if it is 
without singularities in the finite z plane. Because 
of Theorems (3.6) and (3.8), we realize that a 
GASPT function is entire if and only if its ax 
associate is entire; consequently, we have the follow­
ing result. 

Theorem 5.1. A GASPT function, regular about the 
origin, and defined by a series development 

u(x, y) = ~ a,,(x
2 + y2)~"C!XLx2 -: y2)tJ ' (5.1) 

is an entire GASPT function if and only if lim,. ... 
lanll/" = o. 

It is possible also to characterize entire GASPT 
functions by their order and type in a similar 
manner as is done for entire analytic functions. 
With this in mind we shall establish the following: 

Theorem 5.2. Let u(x, y) be a GASPT function with 
a series development (5.1), and let 

(5.2) 

then 

e"-' < lu(x, y)1 < e,H', (5.3) 

for Izi = r sufficiently large and all E > o. Furthermore, 
we may distinguish three cases, a = 0, 0 < a < IX> , 

a = IX> as u(x, y) being of minimum, normal, and 
maximum type, respectively. 

This therorem is essentially a transplant of the 
one concerning analytic functions. 36 First, we note 
that the ax associate of u(x, y) is 

I( ) = ~ r(K + n) " 0" £."a.. , u, 
n-O n. 

and then once we have determined the order and 
type of feu) we bound !u(x, y)1 above and below 
by using CiK[fl and its inverse Ciil[U). The inverse 
operator Ciil[U] may be rewritten as6 

feu) = ail[u) = (~r {jt (r2 - 0"2) 

X 1-' V(z, z)(z - Z)K dz 
+r [(z - O")(Z - U)]tK+l Z ' 

(5.4) 

where 

_ (z+z z-z) V(Z,z) == u -2-' -U ' 
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From (5.4) we have for lu(x, y)1 ~ M(R) (for 
Izl ~ R) that 

If(u) I ~ 2'11" I!3KI M(R)RK[(R2 + l)/(R - pt+2
] 

(for lui ~ P < R), (5.5) 

and for P ~ !R, say, we have 

If(u) I ~ 5Kr(!K?22K- 1M(R). (5.6) 

Expression (5.6) tells us if u(x, y) is of finite 
order and normal type, then If(u)1 also is bounded 
above in this manner. If the order and type of feu) 
are A and a (a -:;t. 0, co), respectively, we must have36 

lim(nl/~.Ian r(K + n)l!n) = (Aea)l/~; (5.7) 
n_= n! 

but since 

-I' (l/~ I r(K + n)l!n) - -I' l/~ I I'" un n an , - Imn a", 
" ..... co n. ,,-tCO 

(5.8) 

we have that both lu(x, y)1 and If(u) I are bounded 
above for R sufficiently large by eaR

'-' for Izl ~ R, 
lui ~ R, respectively, and any E > O. Because of 
(5.6), however, unless lu(x, y)1 also is bounded below 
by eoR

'-', If(u)1 cannot be of order A and type a. 
Our theorem follows from this. 

Corollary 5.3. Let u(x, y) be an entire GASPT 
function of finite order, then filer) = max,e,s.lu(x, y)1 
is bounded by an inequality of the form 

exp R~-' < filer) < exp RH
•• (5.9) 

Theorem 5.4. Let u(x, y) be regular in the disk 
Izi ~ R, u(O, 0) = 0, and let filer) be as above. Then, 
for all Irl ~ !R, filer) is bounded by39 

filer) ~ 5'11"'[r(!(K +l2»/r(!(K + 1»]r. (5.10) 

VI. A RESIDUE CALCULUS FOR GASPT­
FUNCTION ELEMENTS 

The GASPT equation may be rewritten in the form 

iJ ( K iJu) iJ ( K iJu) 
iJx Y iJx + iJy Y iJy = 0, (6.1) 

and in this form it implies the existence of a stream 
function vex, y), which satisfies the Stokes-Beltrami 
equations2

•
6 

K iJu 
Y -= 

iJy 
iJv 
iJx 

(6.2) 

811 For a more detailed discussion of this result see R. 
Gilbert, Some inequalities for generalized axially 8ymmetric 
p()tentials with entire and meromorphic aB8ociates, Technical 
Note BN-315, March 1963, to appear in Duke Math. J. 

It is possible to introduce an integral operator 
a~[f] which generates the stream function v (x, y). 
For instance, if u(x, y) is a GASPT function, 
then feu) = ai1[ul, and 

(6.3) 

It is convenient in what follows that the functions 
u(x, y), vex, y) be real. This may be done by choosing 
feu) so that it is real on the real axis; in the remainder 
of this section we shall assume that u(x, y), vex, y) 
are real. 

We now introduce a complex combination of the 
real potential and stream functions, 

w(x, y) = u(x, y) + iy-Kv(x, y) 

= aK[f(u){1 + !(r + r- 1
)}] = AK[f(U)] 

= -!aK[f(u)(r - 1)2r-l], (6.4) 

consider its domain of association, and the various 
function elements related to this domain of associa­
tion. To simplify our discussion we consider the 
case where feu) = h(u)/(u - a), and h(u) is entire. 
Then, in order to understand the connection between 
the different function elements we must consider 
the singularity manifold for f(u)(r - r-l)K+l, which 
we represent as 

?l = E(r. = (i/y){(x - a) + (-1)" 

X [(x - a)2 + y2],}; JI = 1,2). (6.5) 

Now, unless (x - a)2 + y 2= (z - a)(z - a) = 0, 
the singularity manifold has two branches, which is 
particularly interesting in terms of the Theorems 
(3.6) and (3.8). 

Let us assume that the representation (6.4) is 
defined in the neighborhood of an initial point l. 
It is possible for us to extend this initial domain 
of definition by continuing w(x, y) along a contour 
'Y, starting at zo, providing that no point of 'Y cor­
responds to a singularity of the integrand on the 
path of integration. We recall, however, that u 
depends on both z and r, and hence as we continue 
w(x, y) along 'Y in the z plane, the singularities 
of the integrand move in the r plane. For instance 
the points r = r.(z), (JI = 1, 2) [Eq. (6.5)] move 
and may cross over the path of integration .,e. If 
this should happen, the integral will have a jump 
in value equal to a branch of w(x, y). If t. E .,e 
(JI = 1. 2), then the corresponding "singular" points 
in the z plane are given by 
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x = Re [a] 

- 1m [a][(lrI2 
- 1)/(lrI2 + 1)] tan 1/1, (6.6) 

y == 2 1m [a][lrl/Cltl 2 + I)] sec 1/1, 1/1 = arg [n 
Equations (6.6) may be interpreted as a one-to­
two mapping of the t plane onto the z plane, 
z = Tr. For instance, the arcs £10 == Efr I It I = 1, 
(k - IH1I" ~ arg r ~ khl (k = 1, 2, 3, 4) map 
onto the half lines (when 1m raJ > 0), 

Aj == E{z I x = Re [a]; 

(y/lm [a])<-n f ~ (-I)i+l1 (j == 1,2), (6.7) 

in the following manner: 

the point at infinity of the z plane serves as a 
"double" branch point. 

By a simple computation it can be shown that 
when z crosses Al from the right, rI(Z) leaves the 
unit disk by crossing £4, whereas t2(Z) enters over 
£1' On the other hand, as z crosses All from the right, 
rI(Z) leaves the unit disk by passing over £2, and 
r2(Z) enters over £a. We are now able to consider 
the continuation of w(x, y) along 'Y, which originates 
at a point ZO EI: Al V A2• If 'Y n {AI V All} = 0, 
then w(x, y) may be continued to any point z 
which is the terminal point of 'Y. On the other hand 
if 'Y n {AI V All} = z\ then w(x, y) has a jump 
in value at z\ as we cross over Al or All, which is 
equal to a branch of w(x, y). Because of this property 
associated with the lines AI, A2, we refer to them 
as the lines of separation for w(x, y). 

To clarify this point we consider as an illustration 
the associate feu) = h(u)/(u - a), where h(u) is 
entire and nonzero at u = a. Then 

2aIC 1 h(u)(t - t-1)K+I 

== iy .c [r - rl(Z)][t - r2(Z)] r dr, (6.8) 

where r(z) is given by (6.5). When z crosses Al 
from the left, w(x, y) goes through a jump in value 
equal to 

[-41I"/r(!K)Jh(a)([x - a]' + y'),K-l 

X (-1/2Y)IC(y + i[x - aD. (6.9) 

We are now in a position to consider integrals 
of the following type: 

f,. (udx - y-Kv dy) = Re {f,. w(x, y) dz}, (6.10) 

where Ji. n {y ~ O} = 0, and Ji. is a smooth Jordan 
curve. It is possible to rewrite the integral (6.10) 
by making use of the identity, 

udx - y-Ku dy 

= aK i~l f(u{ dx + ~ dyer + t-1) Jet _ r-1)K-l d{ 

= aK i~l (f(u) du](r - r-1t-1 d{ , (6.11) 

where z is contained in a sufficiently small neighbor­
hood of zo, m(zO), such that m(zO) n [At V A2] = O. 
Then, if Ji. does not intersect Al V All, one has 
clearly-since the integrand is absolutely in­
tegrable-that 

Re {f,. w(x, y) dz} 

= aK fa. [i~l f(u{ dx + ~ dyer + r-1) ] 
X (r - r-1)K-l dr 

r 

== aK 1-1 

dt (r - r-1
)K-l 1 feu) du, (6.12) 

+1 r c. 

where efT is the image of Ji. under the mapping 
z ~ u (r fixed). 

Theorem 6.1. Let wo(x, y) be the GASPT-function 
element defined in a neighborhood of Zo by means of 
the operator AK[fJ, where feu) = h(u)/(u - a), h(u) 
is entire, and h(a) ¢ O. Furthermore, let Ji. be a 
smooth Jordan curve, which originates at a point 
Zo EI: AK (K = 1, 2), and which intersects Al at 
just one point Zl' Then 

Re {f w(x, y) dz} == f (u dx - y-Kv dy) 
iJ. ~. 

= Re {fa. Wo(X, y) dZ} + (-it+! K4;~~2 

X Lr (t - r-1)K-l i ' where ~ = (z - a)/y, and 

Mr = Efr Ilrl = 1; 0 ~ arg [r] 

X cos-1 [1m (a)/y]). (6.13) 

To establish this result we note that the integral 
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of the jump in value of w(x, y) when z crosses Al 
from the left may be written as 

-471" i·· 2 2 lK-l 
r(!K)2 h(a) ., ([x - a] + y ) 

X (;:r([x - a] dy - ydx) 

= +2:.. h~a) 2 i·· (-!:-) d{(1 + [~]2)lK} 
K r(2K) ., x a y 

= ; r~i~)2 {. ~-l d[(1 + ~2)lK]. (6.14) 

When K is an integer, the jump integrals (6.14) 
may be evaluated as6

•
9 

(6.15) 

and 

h() { lK-l 
(K even) + 71" r(!~)2 (f/2 - 1)1 f,; (-1)" 

X " K-2-2" (K - 2' -2' II) }~-(~.'+I)1 

(K - 1; -2; 11+ 1) f/ ~-(h'+l)l' (6.16) 

where (m; -d; II) = d"r(m/d + 1)/r(m/d - II + 1). 
Theorem 6.1 may be reinterpreted in terms of 

the composition on quasimultiplication6
•
9 for GASPT 

functions, which we define as 

Ua(x, y) = u1(x, y) * U2(X, y) = aK[ft(o)Mo)], (6.17) 

uj(x, y) = aK[fj(O')] , j = 1,2,3. 

(We note that quasimultiplication is commutative, 
associat.ive, and distributive over ordinary addition.) 

Let 

N(a, K)h(a) 

= aK I-I (t - r- 1)K-l dt f h(O') dO', (6.18) 
+1 r err U - a 

where 

N(a, K) = Lr (r - r- 1)K-l dt ' 

and h(O') is entire. Furthermore, let Re {11I(x, y)dz} 
~aK[f(O')dO'], and 

PK(:' a) = aK[O' ~ a] 

( 
I)K-l 1 

= r(!~)2;y [(z - a)(z _ a)]HK , 
(6.19) 

then 

Re {t11(x, y) dz} * { / )} = aK[f(O') dO']. (6.20) 
PK Z, a 0' - a 

The introduction of the terms PK(Z, a) suggests 
an expression for GASPT functions, corresponding 
to aK associates having Laurent expansions about 
0' = a. Suppose 

( ) bm+l + b m + g 0' = ( )m+l ( )"' ••• O'-a O'-a 

b1 ~ • + -- + "-' Cj(O' - a)', 
0' - a j-O 

and then for K odd we have 

G(x, y) = aK[g(O')] 

m+1 co 

= L bjaK[O' - afi] + L cjaK[(O' - a)i] 
i-I j-O 

(6.21) 

... +1 ( l)jb ( I)K-l aj
-

1 

= f.; jl ~(!K)2;y axi-l {(z - a)(z - a)} lK-l 

~ _ li 1K{ X - a } + f='o Cj[(Z - a)(z - a)] Cj [(z _ a)(z _ a)]! . 

(6.22) 

In general, however, we would write 

m+l {I }; 
G(x, y) = L * 

j-l PK(Z, a) 

~ ; 1K[X - a] + ~R(z,a) C; R-( ) , .-0 Z, a 
(6.23) 

where 

(j terms), and R(z, a)2 = (z - a)(z - a). 
Theorem 6.1 suggests also the following analog 

of the argument principle in GASPT. 

Theorem 6.2. Let the AK associate of w(x, y) be 
I'(O')/f(O') , and suppose that JJ is a smooth, Jordan 
curve in the z plane, not passing through any zeros 
or poles of fez). Furthermore, let fez) have zeros at 
{a,,}:_l with multiplicities {r,,};'_1 and poles at {b.}:_1 
with multiplicities {s.1 :-u inside of JJ. Then 
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.. 
- y dx} ([x - ap]2 + y2)iK- 1 - I: Sa 

X 18 {[x - ba] dy - y dx} ([x - ba]2 + y2)iK-1 

= ~ I-I n{f[(u(r)]; O}[r - r-It-I dr 
2'l1"l +1 r 

111-1 

f r"N(ap ; K) - t s.N(b.; K), (6.24) 
1'-1 .-1 

where n{y; O} is the winding number of 'Y with respect 
to 0, and f[Cir)] is the image of Cv by feu) for fixed r. 
C v is the image of J) under the mapping z ~ 0' for 
fixed r· 

Theorem 6.3. Let the AK associate of w(x, y) be 
g(u)f'(u)/f(u), and suppose that J) is a smooth Jordan 
curve in the z plane not passing through any of the 
zeros {ap};"1 or poles {b.}:_1 of feu). (The zeros and 
poles have the orders r", s., respectively.) Furthermore, 
let g(z) be regular-analytic for z inside J), then 

I, aK[f g dO' ] = 1~ aK[fJ * aK[g dO'] 

= 1 {f r" - t s. }*IRe G(x y) dz} 
9 ,,-I PK(Z; a,,) .-1 PK(Z; bq) , 

= 21r'iaK{"~r,,g(a,,)N(a,,;K) - ?;s.g(ba)N(b.;K)}, 

operator 2lK [f]: 

u(x, y) = 2lK[f] 

I
-I 

= OiK 
+1 

1 tI-1 

(7.4) 

where feu, 0'*) is a holomorphic function of the two 
complex variables 0', 0'* in the polydisk 110'1 ~ R} X 
{lu*1 ~ R'}. 0' is the same as before, and 0'* = 
X - (iy/2)(r + r- I

), l is an initial point of definition 
for u(x, y), and Iz - zOI < E where E > ° is suffi­
ciently small, etc. Furthermore, it is evident that 
for Irl = 1, and x, y real 0'* = iT; if af/au = 0, 
or aflau* = 0, then f is just a function of either u· 
or 0', respectively, and 2lK ~ aK' 

In an earlier workS we established the following 
theorem concerning the generality of solutions gen­
erated by 2lK ff]. 

Theorem 7.1. In a sufficiently small neighborhood 
m;(zO) of an initial point zO, the representation 

u(x, y) = ~K[f] = OiK i~1 feu, u*)(r - r-I)K-I d[ 
ItI-1 

yields the most general, analytic (in the real variables 
x, y) solution to L(K)[u] = p, providing that f is 
contained in the class of analytic functions of two 
variables :J which satisfy the integral equation 

p(x y) = 4 1-1 
~ (r - r-I)K-I dr. (7.5) 

, +1 au au* r 
1 tI-1 

where 

G(x, y) = -!aK[g(u)(r - 1)2r-I]. 
Vll. POISSON'S EQUATION IN GASPT 

In order to understand how this operator trans­
(6.25) forms analytic functions of two variables into solu­

tions of (7.1) we consider the integrals 

In this section, which concludes our present dis- u"m(x, y) = 2lK[U"U*m] 

cussion of function-theoretic methods in GASPT, = Oil( i-11 u"u*m(r _ r-I)K-I df , 
we consider the nonhomogeneous equation ~ 

(7.6) 

L(K)[u(x, y)] = p(x, y). (7.1) 

For K = 0, this equation may be solved formally 
by replacing x, y by z = x + iy, z* = x - iyand 
integrating. That is, 

111-1 

which we evaluate to be 
·K 

( ) 
_ ~, , .. +m 

u"m x, y - OiK K n. m. r 

+.. +m (-1)' 

(7.2) X .~" ~~m (n + II)! (m + IL)! A (2)U = 4 ~ = (z + z* z - z*) 
iJz iJz* P 2 ' 2i ' 

which may be integrated directly into 

f a' f" (z + z* z - z*) 
U= P-2-,~dzdz* 

+ g(z) + h(z*). (7.3) 

This method suggests that we consider the integral 

X p:mp':n(~) (7 7) 
BO(K + 1 + IL + II), !(K + 1 - IL - II» , • 

B(p, q) = r(p) r(q)/ rep + q) by using the integral 
relations for the associated Legendre functions 

n! r"P":.(~) = --L f u"!''' dr 
men + m)! 2'l!"i ItI-1 r ' (7.8) 
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and 

~""n! r"P':(~) = ~ f O'*"r'" dr. 
(n - m)! 21rt Itl-I r 

Consequently, the function f(O', 0'*) holomorphic 
about the origin, 

00 

f( *) -" " *'" 0', 0' - £...t a"",O' 0' , (7.9) 
n,m-O 

are mapped by ~K[f] onto the solutions 
00 

u(x, y) = E a"",u"",(x, y) (7.10) 
",m-O 

of the nonhomogeneous GASPT equation that are 
regular in a neighborhood of the origin. 

In order to generate a particular solution of 
L K[U] = p, where 

00 

p(x, y) = E p"",x"y'\ Izl < R, (7.11) 
ft..m.-o 

we consider the integral equation 

i~1 g(O', O'*)(r - r-I)K-I df = p(x, y), (7.12) 

1(1-1 

where g(O', 0'*) = 4aK(02floO'oO'*). We may solve 
formally for the Taylor coefficients gMN of g(O', 0'*) 
as follows: 

(7.13) 

anm = fJmK 

x f t (-ly(m)(n)g'+I'.cm+A>_c,+I'>' 
,,-0 .-0 J.I. II 

(7.14) 

where 

There are two special cases for which we may 
obtain g(O', 0'*) immediately, when p is a function 
of either x or y alone. When p(x, y) = p(x), we may 
choose g(O', 0'*) to have the form G(O' + 0'*) = G(2x). 
Then 

g(O', 0'*) = G(2x) = ~(x) , 
tJOK 

where (7.16) 

(30K = KB(i(K + 1), i(K + 1» , 
and 

f(O',O'*) = ~ 0'0'*. (7.17) 
4aK{3oK 

A particular solution to (7.1) is then given by 

7r 2.K ( ) ~ ~ ( -ltP;(~)Pi(~) 
--r~px £...t £...t • 
- K ,--1,.--1 (II + 1)1 (p. + 1)IB(i(K + 1 + J.I. + II), i(K + 1 - J.I. - II» 

(7.18) 

When p(x, y) = p(y), a particular solution may 
be obtained by representing g(O', 0'*) by G(O' - 0'*) = 
G(iy[r + r- 1

]), where G(O' - 0'*) must satisfy the 
integral equation 

i~1 G(iy[r + r-1])(r - r-I)K-I d! = p(y). (7.19) 

1rI-1 

Now, if G(z) = E:-o g,z', and p(y) = E:-o PrY', 
then we may compute the coefficients g, formally 
as follows: 

= 7rKiK f g,,(-y)"{f (n)(_IY 
,,-0 If-O JI 
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from which we have 

g. = (~~rp .. , where 'YK .. ;: t (n)(_lY 
'If' l 'YKa .-0 II 

B(
K + 1 - n + K + 1 + n _ )-1 

2 II, 2 II, (7.21) 

providing 'YK.. ~ 0 for all n, and K < O. In this 
case we may proceed as before and obtain a particular 
solution 

1 I-I u(x, y) = 4 +1 uu*G(iy[r + r- 1
]) 

IrI-l 

In closing we should like to mention several other 
papers, which are related to the present subject: 

R. Gilbert, Proc. Am. Math. Soc. 13, 229 (1962); 
R. Gilbert, Contrib. Differential Eqs. 1,441 (1963); 
J. B. Diaz, and G. S. S. Ludford, Canadian J. 

Math. 8, 82 (1956); 
R. Gilbert, Pacific J. Math. 13, 79 (1963); 
R. Gilbert and H. C. Howard, Technical Note 

BN-350, Univ. Maryland (1964); 
R. Gilbert and H. C. Howard, Technical Note 

BN-352, Univ. Maryland (1964); 
E. Kreyzig, Archiv. Math. 14, 193 (1963); 
J. Mitchell, Math. Z. 82, 314 (1963); 
A. White, Ann. Polonici Math, 10,81 (1961). 
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Fluctuations in Multiple Capture Processes 

ALBERT G. PETSCHEK 

University of California, Los Alamos Scientific Laboratory, Lo8 Alamos, New Mexico 
(Received 17 December 1963) 

The fluctuation in the number of many-fold captures by an element exposed to a high neutron flux 
is computed. It is found that the fluctuations are identical to those that would be obtained by selecting 
nuclei at random from an infinite supply with the appropriate average composition. 

I T is known that, in a nuclear weapon, uranium can 
be subjected to fluxes of neutrons sufficient to 

allow it to capture neutrons repeatedly. I Inasmuch 
as the transuranium elements resulting from this 
process are easily detectable and it may in future 
tests be possible to mine substantially all the debris 
from the explosion, it is of interest to compute the 
statistical fluctuations in the number of plural 
captures. One might suppose that an anomalously 
high number of nth captures would lead to an 
anomalously high number of (n + l)th captures, 
etc., and that the fluctuations would therefore build 
up; but he would be wrong. It is shown below that 
the distribution of n-fold captures among N nuclei 
exposed to a flux is in fact just that which would 
result from choosing N nuclei at random from a 
supply having the appropriate average distribution. 

Consider first an infinite box containing balls of 
colors labeled 0, 1, ... ,n, ... m in the proportions 
p,.. Then it is well known for m = 1 and true in 
general that the probability of having exactly Xo 

balls of color 0, Xl of color 1, etc., among N balls 
chosen at random is the term containing p~.p~' ... 
in the binomial expansion of (2: p,.)N. It is con­
venient to introduce a generating function g by 
means of 

(1) 

in terms of which it is easy to evaluate the moments 
of the distribution. For example the mean number 
of n-colored beads is (X,.) = ag/ay,. taken at constant 
Yk, k ,= n and evaluated at YI = 1, l = 0, 1, ... , m; 
the standard deviation in x,. can be found from 
(x,.(x,. - 1» = a2g/ay!, and the correlation between 
Xn and Xk from (XnXk) = a2g/ay,. aYk' 

It is now shown that the generating function for 
the distribution of multiple captures is identical in 
form to g. Let P(Xo, Xl, ••• X".; z) be the probability 
that there are exactly x" n-fold captures after an 

I A. Ghiorso, et al., Phys. Rev. 99, 1048 (1955); P. R. 
Fields, et al., Phys. Rev. 102, 180 (1956). 
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exposure z. Because it takes nothing from the 
understanding of the problem and simplifies the 
expressions for the average number of captures im­
mensely,2 the fission cross sections are taken to be 
zero and the capture cross sections are assumed 
equal except for the mth. In that case it is con­
venient to define z = J 1/ITV dt where 1/ is the neutron 
density, IT the capture cross section, v the velocity, 
and t the time. To make the problem finite, take the 
mth capture cross section to be zero or, alternatively, 
refuse to notice the difference between an m-fold 
capture and any higher capture. In that case 

a az P(XOXI ••• Xm; z) 

= -(N - xm)P(XOXI ••• X".; z) + 2: (x" + 1) 

X P(XOXI ••• ,(x .. + 1), (x,,+! - 1), ... x ... ;z), (2) 

where the first term represents the decrease in P 
because of a capture which changes x" to x.. - 1 
and Xn+l to X,,+l + 1 while the sum represents the 
increase due to a capture which changes the nth 
argument of P from x" + 1 to x" and the (n + l)th 
from Xn+l - 1 to Xn+l' Now let 

G(yo, YI, ... y ... ;z) 

2: y~.y~"" y:,. .. P(XOXI ••• x .. ; z). (3) 
Zo '2:1.··· 

Then aG/aYn = xnG/y" and therefore the following 
equation for G is obtained by multiplying (2) by 
the product of the y~., summing, promoting the 
index x,., and demoting Xn+l in the rightmost term: 

a a a -a G = -NG + Y ... -a G + Ly .. +l -a G. (4) 
z ~ ~ 

The characteristics of this differential equation are 
given by 

dYm/Y ... = -dz; dy .. = -Y .. +I dz, n,= m, (5) 

2 J. J. Devaney, A. G. Petschek, and M. T. Menzel, Los 
Alamos Rept. LAMS 2226 (not otherwise published). 
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whose solution is G = (2: p"y,,t (10) 

with 
(6) 

Yo = A ... e-· ± Am_1[z .. -1/(m - I)!] T ... 

+ !A2l - A1z + Ao, 

where the An are constants of integration. Along the 
characteristics G satisfies 

dG/dz = -NG (7) 

and if the initial condition on P is taken to be 
peN, 0 ... 0; 0) = 1 then 

(8) 

where the Yo on the right must of course be found by 
following the appropriate characteristic to z = 0 
which makes it equal to Am + Ao. The solution of 
(7) with (8) is 

Z" -a 
p .. = n! e n < m, 

"" k 
~z _, 

Pm = ~ k! e . (11) 

G is therefore exactly of the form (1). The P .. given 
by (11) are the probabilities of n-fold capture and 
can also be found from simpler calculations.2 

The contention made in the first paragraph, that 
the correlations among the x" are no different from 
those resulting from the random selection of nuclei 
from a reservoir, is therefore established. 
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Errata: Excitation Spectrum of an Impurity in the Hard-Sphere Bose Gas 

TOSHIO SODA 

The Enriro Fermi Institute for Nuclear Studie8, The Univer8ity of Ohicago, Ohicago, Illinois 
(Received 18 February 1964) 

[J. Math. Phys. 5, 142 (1964)] 

Equation (1) on p. 142 should read HB = L p2a:ap +! L V.a;+.a;,ap,+oap 
II fI,p'.cr 

HA = L p2a:ap +! L V.a;+.a:,a~+.ap. 
II p,P',Cl 

(1) + L p2b:bp + L V.a;+.b;,bp,+.ap. 
P J),p',a: 

Equation (4) on p. 143 should read 

Equation (7) on p. 143 should read 
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(7) 

(24) 
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